首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
. This essay considers the responses of Paramecium and other ciliates to the inorganic ion environment from an elec-trophysiological point of view. In reviewing data from published and unpublished sources it is shown that ions affect the cellular behaviour in multiple ways because the transmembrane potential can change due to the alteration of equilibrium potentials, ion conductances and surface charges of the membrane. Sensory input including effects from the ionic environment converge upon the membrane potential which has a temporal and spatial summing function. Hyperpolarizing and depolarizing potential shifts from the set point are near-simultaneously and omnidirectionally transmitted along the membrane including the ciliary boundaries. The membrane potential regulates ciliary motility via an intraciliary messenger, Ca2+, which can enter, and presumably leave, the cytosol directly adjacent to the ciliary motor. Integration of the responses of thousands of cilia occurs in accordance with the electrical and structural provisions of the cell. Potential-regulated motor and behavioural responses attenuate with time. This phenomenon, which has been loosely termed adaptation, has an electrophysiological basis in analogy to membrane accommodation following sustained stimulus input. The mechanisms of adaptation serve to restore, in principle, the membrane resting state and, thereby, the sensitivity to depolarizing and hyperpolarizing shifts of the membrane potential and the cell's responsiveness to environmental stimuli, respectively. For the inorganic ions involved in chemosensation the terms attractant and repellent are not applicable. They should be reserved to signalling substances which per se can define the behaviour of the cell.  相似文献   

2.
We investigated the influence of various kinds of glycosaminoglycans (GAGs) in collagen gels on the maintenance of albumin synthesis in primary culture of rat hepatocytes. Among the GAGs examined (heparin, heparan sulfate, keratan sulfate, chondroitin sulfate A, dermatan sulfate, and hyaluronic acid), only heparin-containing collagen gel cultures could significantly sustain albumin synthesis. However, other GAGs, such as heparan sulfate and keratan sulfate, had almost no effect on the maintenance of albumin synthesis. Heparin in collagen gels exhibited a dose-dependent effect on albumin synthesis: heparin at 400 μg/ml-collagen solution maintained albumin synthesis for over 3 weeks. On the other hand, when an equivalent amount of heparin was added directly to the collagen gel culture medium, it prolonged albumin synthesis for only 10 days. The results demonstrate that specific regulation of albumin synthesis by heparin was significantly promoted by coincubating it with collagen, suggesting that some specific interaction between heparin and collagen might be of importance for the maintenance of hepatocyte functions.  相似文献   

3.
Fibroblast growth factor 2 (FGF-2, basic fibroblast growth factor) has been reported to be elevated in tissues from benign prostatic hyperplasia (BPH), the most frequent neoplastic disease in aging men. This suggests that FGF-2 may play a significant role in the development of BPH. In this study the cellular distribution pattern of FGF-2 in tissues from BPH has been investigated by immunohistochemical and molecular biological methods. Radioimmunoassay revealed high concentrations of FGF-2, ranging between 450 and 950 ng per g tissue. Immunoblots confirmed the presence of a 18 kDa FGF-2 in tissue extracts. By immunohistochemistry done with a polyclonal antibody to recombinant FGF-2 on paraffin sections, FGF-2 was localized in fibroblasts, endothelial cells and smooth muscle cells of tissue samples of BPH. Nuclei of these cells were labelled distinctly. Moreover the cytoplasm of smooth muscle cells was labelled moderately. No immunostaining was seen in prostatic epithelium. Non-radioactive in situ hybridization with digoxygenin-labelled oligonucleotides revealed the presence of mRNA for FGF-2 in smooth muscle cells of the prostatic stroma. These results provide evidence that FGF-2 may be produced locally in the human prostate as a stroma-specific mitogen and may play a causal role in the development of BPH.  相似文献   

4.
Extracellular purines are involved in the regulation of a wide range of physiological processes, including cytoprotection, ischemic preconditioning, and cell death. These actions are usually mediated via triggering of membrane purinergic receptors, which may activate antioxidant enzymes, conferring cytoprotection. Recently, it was demonstrated that the oxidative stress induced by cisplatin up-regulated A1 receptor expression in rat testes, suggesting an involvement of purinergic signaling in the response of testicular cells to oxidant injury. In this article, we report the effect of hydrogen peroxide on purinergic agonist release by cultured Sertoli cells. Extracellular inosine levels are strongly increased in the presence of H2O2, suggesting an involvement of this nucleoside on Sertoli cells response to oxidant treatment. Inosine was observed to decrease H2O2-induced lipoperoxidaton and cellular injury, and it also preserved cellular ATP content during H2O2 exposure. These effects were abolished in the presence of nucleoside uptake inhibitors, indicating that nucleoside internalisation is essential for its action in preventing cell damage.  相似文献   

5.
Heparin-like glycosaminoglycans (HLGAGs) play a central role in the biological activity and signaling behavior of basic fibroblast growth factor (FGF-2). Recent studies, however, indicate that FGF-2 may be able to signal in the absence of HLGAG, raising the question of the nature of the role of HLGAG in FGF-2 signaling. In this study, we present a conceptual framework for FGF-2 signaling and derive a simple model from it that describes signaling via both HLGAG-independent and HLGAG-dependent pathways. The model is validated with F32 cell proliferation data using wild-type FGF-2, heparin binding mutants (K26A, K119A/R120A, K125A), and receptor binding mutants (Y103A, Y111A/W114A). In addition, this model can predict the cellular response of FGF-2 and its mutants as a function of FGF-2 and HLGAG concentration based on experimentally determined thermodynamic parameters. We show that FGF-2-mediated cellular response is a function of both FGF-2 and HLGAG concentrations and that a reduction of one of the components can be compensated for by an increase in the other to achieve the same measure of cellular response. Analysis of the mutant FGF-2 molecules show that reduction in heparin binding interactions and primary receptor site binding interactions can also be compensated for in the same manner. These results suggest a molecular mechanism that could be used by cells in physiological systems to modulate the FGF-2-mediated cellular response by controlling HLGAG expression.  相似文献   

6.
7.
Although females suffer twice as much as males from stress-related disorders, sex-specific participating and pathogenic cellular stress mechanisms remain uncharacterized. Using corticotropin-releasing factor receptor 2–deficient (Crhr2−/− ) and wild-type (WT) mice, we show that CRF receptor type 2 (CRF2) and its high-affinity ligand, urocortin 1 (Ucn1), are key mediators of the endoplasmic reticulum (ER) stress response in a murine model of acute pancreatic inflammation. Ucn1 was expressed de novo in acinar cells of male, but not female WT mice during acute inflammation. Upon insult, acinar Ucn1 induction was markedly attenuated in male but not female Crhr2−/− mice. Crhr2−/− mice of both sexes show exacerbated acinar cell inflammation and necrosis. Electron microscopy showed mild ER damage in WT male mice and markedly distorted ER structure in Crhr2−/− male mice during pancreatitis. WT and Crhr2−/− female mice showed similarly distorted ER ultrastructure that was less severe than distortion seen in Crhr2−/− male mice. Damage in ER structure was accompanied by increased ubiquitination, peIF2, and mistargeted localization of vimentin in WT mice that was further exacerbated in Crhr2−/− mice of both sexes during pancreatitis. Exogenous Ucn1 rescued many aspects of histological damage and cellular stress response, including restoration of ER structure in male WT and Crhr2−/−mice, but not in females. Instead, females often showed increased damage. Thus, specific cellular pathways involved in coping and resolution seem to be distinct to each sex. Our results demonstrate the importance of identifying sex-specific pathogenic mechanisms and their value in designing effective therapeutics.  相似文献   

8.
Fibroblast growth factor-21 (FGF-21) is a metabolic regulator that can influence glucose and lipid control in diabetic rodents and primates. We demonstrate that betaKlotho is an integral part of an activated FGF-21-betaKlotho-FGF receptor (FGFR) complex thus a critical subunit of the FGF-21 receptor. Cells lacking betaKlotho did not respond to FGF-21; the introduction of betaKlotho to these cells conferred FGF-21-responsiveness and recapitulated the entire scope of FGF-21 signaling observed in naturally responsive cells. Interestingly, FGF-21-mediated effects are heparin independent suggesting that betaKlotho plays a role in FGF-21 activity similar to the one played by heparin in the signaling of conventional FGFs. Moreover, in addition to conferring specificity for FGF-21, betaKlotho appears to support FGF-19 activity and mediates the receptor selectivity profile of FGF-19. All together, these results indicate that betaKlotho and FGFRs form the cognate FGF-21 receptor complex, mediating FGF-21 cellular specificity and physiological effects.  相似文献   

9.
Interactions between chemokines such as CCL5 and glycosaminoglycans (GAGs) are essential for creating haptotactic gradients to guide the migration of leukocytes into inflammatory sites, and the GAGs that interact with CCL5 with the highest affinity are heparan sulfates/heparin. The interaction between CCL5 and its receptor on monocytes, CCR1, is mediated through residues Arg-17 and -47 in CCL5, which overlap with the GAG-binding 44RKNR47 “BBXB” motifs. Here we report that heparin and tetrasaccharide fragments of heparin are able to inhibit CCL5-CCR1 binding, with IC50 values showing strong dependence on the pattern and extent of sulfation. Modeling of the CCL5-tetrasaccharide complexes suggested that interactions between specific sulfate and carboxylate groups of heparin and residues Arg-17 and -47 of the protein are essential for strong inhibition; tetrasaccharides lacking the specific sulfation pattern were found to preferentially bind CCL5 in positions less favorable for inhibition of the interaction with CCR1. Simulations of a 12-mer heparin fragment bound to CCL5 indicated that the oligosaccharide preferred to interact simultaneously with both 44RKNR47 motifs in the CCL5 homodimer and engaged residues Arg-47 and -17 from both chains. Direct engagement of these residues by the longer heparin oligosaccharide provides a rationalization for its effectiveness as an inhibitor of CCL5-CCR1 interaction. In this mode, histidine (His-23) may contribute to CCL5-GAG interactions when the pH drops just below neutral, as occurs during inflammation. Additionally, an examination of the contribution of pH to modulating CCL5-heparin interactions suggested a need for careful interpretation of experimental results when experiments are performed under non-physiological conditions.  相似文献   

10.
We examined the effect of fibroblast growth factor (FGF)-2 on myocardial resistance to injury when administered after the onset of ischemia, in vivo and ex vivo, and the role of FGF-2 receptors and protein kinase C (PKC). FGF-2 was injected into the left ventricle of rats undergoing permanent surgical coronary occlusion leading to myocardial infarction (MI). After 24 h, FGF-2-treated hearts displayed significantly reduced injury, determined by histological staining and troponin T release, and improved developed pressure compared with untreated controls. An FGF-2 mutant with diminished affinity for the tyrosine kinase FGF-2 receptor 1 (FGFR1) was not cardioprotective. FGF-2-treated hearts retained improved function and decreased damage at 6 wk after MI. In the ex vivo heart, FGF-2 administration during reperfusion after 30-min ischemia improved functional recovery and increased relative levels of PKC subtypes alpha, epsilon, and zeta in the particulate fraction, in a chelerythrine-preventable mode; it also decreased loss of energy metabolites. We conclude that intramyocardial FGF-2 administration shortly after the onset of ischemia confers protection from acute and chronic cardiac dysfunction and damage; FGF-2 delivered during reperfusion protects from ischemia-reperfusion injury; and protection by FGF-2 requires intact binding to FGFR1 and is likely mediated by PKC.  相似文献   

11.
Serotonin transporter gene variants are known to interact with stressful life experiences to increase chances of developing affective symptoms, and these same variants have been shown to influence amygdala reactivity to affective stimuli in non-psychiatric populations. The impact of these gene variants on affective neurocircuitry in anxiety and mood disorders has been studied less extensively. Utilizing a triallelic assay (5-HTTLPR and rs25531) to assess genetic variation linked with altered serotonin signaling, this fMRI study investigated genetic influences on amygdala and anterior insula activity in 50 generalized anxiety disorder patients, 26 of whom also met DSM-IV criteria for social anxiety disorder and/or major depressive disorder, and 39 healthy comparison subjects. A Group x Genotype interaction was observed for both the amygdala and anterior insula in a paradigm designed to elicit responses in these brain areas during the anticipation of and response to aversive pictures. Patients who are S/LG carriers showed less activity than their LA/LA counterparts in both regions and less activity than S/LG healthy comparison subjects in the amygdala. Moreover, patients with greater insula responses reported higher levels of intolerance of uncertainty, an association that was particularly pronounced for patients with two LA alleles. A genotype effect was not established in healthy controls. These findings link the serotonin transporter gene to affective circuitry findings in anxiety and depression psychopathology and further suggest that its impact on patients may be different from effects typically observed in healthy populations.  相似文献   

12.
The aim of the present study was to investigate the effects of an enhanced CO2 concentration alone or in combination with drought stress on antioxidative systems of a deciduous (oak; Quercus robur) and an evergreen (pine; Pinus pinaster) tree species. The seedlings were grown for one season in a greenhouse in tunnels supplied with 350 or 700 [mu]L L-1 CO2. The experiment was repeated in a second year. Antioxidants, protective enzymes, soluble protein, and pigments showed considerable fluctuations in different years. Elevated CO2 caused significant reductions in the activities of superoxide dismutases in both oak and pine. The activities of ascorbate peroxidase and catalase were also reduced in most cases. The activities of dehydroascorbate reductase, monodehydroascorbate radical reductase, glutathione reductase, and guaiacol peroxidase were affected little or not at all by elevated CO2. When the trees were subjected to drought stress by withholding water, the activities of antioxidative enzymes decreased in leaves of pine and oak grown at ambient CO2 and increased in plants grown at elevated CO2 concentrations. The present results suggest that growth in elevated CO2 might reduce oxidative stress to which leaf tissues are normally exposed and enhance metabolic flexibility to encounter increased stress by increases in antioxidative capacity.  相似文献   

13.
Functional diversity of FGF-2 isoforms by intracellular sorting   总被引:2,自引:0,他引:2  
Regulation of the subcellular localization of certain proteins is a mechanism for the regulation of their biological activities. FGF-2 can be produced as distinct isoforms by alternative initiation of translation on a single mRNA and the isoforms are differently sorted in cells. High molecular weight FGF-2 isoforms are not secreted from the cell, but are transported to the nucleus where they regulate cell growth or behavior in an intracrine fashion. 18 kDa FGF-2 can be secreted to the extracellular medium where it acts as a conventional growth factor by binding to and activation of cell-surface receptors. Furthermore, following receptor-mediated endocytosis, the exogenous FGF-2 can be transported to the nuclei of target cells, and this is of importance for the transmittance of a mitogenic signal. The growth factor is able to interact with several intracellular proteins. Here, the mode of action and biological role of intracellular FGF-2 are discussed.  相似文献   

14.
Mucolipidosis type IV (MLIV) is caused by loss of function mutations in the TRPML1 ion channel. We previously reported that tissue zinc levels in MLIV were abnormally elevated; however, the mechanism behind this pathologic accumulation remains unknown. Here, we identify transmembrane (TMEM)‐163 protein, a putative zinc transporter, as a novel interacting partner for TRPML1. Evidence from yeast two‐hybrid, tissue expression pattern, co‐immunoprecipitation, mass spectrometry and confocal microscopy studies confirmed the physical association of TMEM163 with TRPML1. This interaction is disrupted when a part of TMEM163's N‐terminus was deleted. Further studies to define the relevance of their interaction revealed that the plasma membrane (PM) levels of TMEM163 significantly decrease when TRPML1 is co‐expressed in HEK‐293 cells, while it mostly localizes within the PM when co‐expressed with a mutant TRPML1 that distributes mostly in the PM. Meanwhile, co‐expression of TMEM163 does not alter TRPML1 channel activity, but its expression levels in MLIV patient fibroblasts are reduced, which correlate with marked accumulation of zinc in lysosomes when these cells are acutely exposed to exogenous zinc (100 μM). When TMEM163 is knocked down or when TMEM163 and TRPML1 are co‐knocked down in HEK‐293 cells treated overnight with 100 nm zinc, the cells have significantly higher intracellular zinc levels than untreated control. Overall, these findings suggest that TMEM163 and TRPML1 proteins play a critical role in cellular zinc homeostasis, and thus possibly explain a novel mechanism for the pathological overload of zinc in MLIV disease.   相似文献   

15.
Pye DA  Vivès RR  Hyde P  Gallagher JT 《Glycobiology》2000,10(11):1183-1192
The interaction of heparan sulfate (HS) (and the closely related molecule heparin) with FGF-1 is a requirement for enabling the growth factor to activate its cell surface tyrosine kinase receptor. However, little is known about the regulatory role of naturally occurring cell surface HS in FGF-1 activation. We have addressed this issue by utilizing a library of HS oligosaccharides, which are defined in both length and sulfate content. Mitogenic activation assays using these oligosaccharides showed that HS contained both FGF-1 activatory and inhibitory sugar sequences. Further analysis of these oligosaccharides showed a clear correlation between FGF-1 promoting activity and their 6-O-sulfate content. The results, in particular with the dodecasaccharide sequences, suggested that specific positioning of 6-O-sulfate groups may be required for the promotion of FGF-1 mitogenic activity. This may also be true for 2-O-sulfate groups though the evidence was not as conclusive. Differential activation of FGF-1 and FGF-2 was also observed and found to be mediated by both oligosaccharide length and sulfation pattern, with different specific O-sulfate positioning being implicated for the promotion of different growth factors. These results suggest that variation and tight control of the fine structure of HS may allow cells to not only control their positive/negative responses to individual FGFs but also to change specificity towards promotion of different members of the FGF family.  相似文献   

16.
In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a): Drosophila tachykinin (DTK), short neuropeptide F (sNPF) and ion transport peptide (ITP). These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells.  相似文献   

17.
When FGF-1 or FGF-2 and VEGF were added together, the mitogenic effect of FGF-1 or FGF-2 and VEGF on HUVEC was additive. However, when HUVECs were preincubated for 2 days with 10 ng/ml FGF-1 in the absence of VEGF, the Scatchard plot of [125I]VEGF binding sites was shifted to the right: both affinity classes of VEGF binding sites were equally affected, such that the total number of sites increased twofold. It is suggested that this type of interaction may be related to tumor angiogenesis and wound repair.  相似文献   

18.
The entry of exogenous fibroblast growth factor 2 (FGF-2) to the cytosolic/nuclear compartment was studied and compared with the translocation mechanism used by FGF-1. To differentiate between external and endogenous growth factor, we used FGF-2 modified to contain a farnesylation signal, a CaaX-box. Because farnesylation occurs only in the cytosol and nucleoplasm, farnesylation of exogenous FGF-2-CaaX was taken as evidence that the growth factor had translocated across cellular membranes. We found that FGF-2 translocation occurred in endothelial cells and fibroblasts, which express FGF receptors, and that the efficiency of translocation was increased in the presence of heparin. Concomitantly with translocation, the 18-kDa FGF-2 was N-terminally cleaved to yield a 16-kDa form. Translocation of FGF-2 required PI3-kinase activity but not transport through the Golgi apparatus. Inhibition of endosomal acidification did not prevent translocation, whereas dissipation of the vesicular membrane potential completely blocked it. The data indicate that translocation occurs from intracellular vesicles containing proton pumps and that an electrical potential across the vesicle membrane is required. Translocation of both FGF-1 and FGF-2 occurred during most of G(1) but decreased shortly before the G(1)-->S transition. A common mechanism for FGF-1 and FGF-2 translocation into cells is postulated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号