首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although mild hypothermia generally reduces protein synthesis in mammalian cells, the expression of a small number of proteins, including Rbm3, is induced under these conditions. In this study, we identify an Rbm3 mRNA with a complex 5' leader sequence containing multiple upstream open reading frames. Although these are potentially inhibitory to translation, monocistronic reporter mRNAs containing this leader were translated relatively efficiently. In addition, when tested in the intercistronic region of dicistronic mRNAs, this leader dramatically enhanced second cistron translation, both in transfected cells and in cell-free lysates, suggesting that the Rbm3 leader mediates cap-independent translation via an internal ribosome entry site (IRES). Inasmuch as Rbm3 mRNA and protein levels are both increased in cells exposed to mild hypothermia, the activity of this IRES was evaluated at a cooler temperature. Compared to 37 degrees C, IRES activity at 33 degrees C was enhanced up to 5-fold depending on the cell line. Moderate enhancements also occurred with constructs containing other viral and cellular IRESes. These effects of mild hypothermia on translation were not caused by decreased cell growth, as similar effects were not observed when cells were serum starved. The results suggest that cap-independent mechanisms may facilitate the translation of particular mRNAs during mild hypothermia.  相似文献   

2.
Biochemistry (Moscow) - Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with...  相似文献   

3.
Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.  相似文献   

4.
金由辛 《生命的化学》2000,20(4):145-146
Sasaki等在ProcNatlAcadSciUSA 2 0 0 0年第 4期上报道了一种不依赖甲硫氨酸的翻译起始方式[1] 。PSIV (Plautiastaliintestinevirus)是一种昆虫RNA病毒 ,属蟋蟀麻痹样病毒组 (Cricketparalysis likeviruses) ,为正链RNA病毒。属于该组的还有DCV、RhPV、HiPV等。该组病毒的理化性质与哺乳动物的小RNA病毒 (picornavirus)相似 ,但基因图 1  (A)PSIV基因组结构 ;(B)预测的外壳蛋白编码区上游的茎环结构组织不同。…  相似文献   

5.
Initiation of Mammalian Viral Protein Synthesis   总被引:5,自引:0,他引:5  
CULTURED human cells (KB) infected with human adenovirus type 2 (Ad 2) provide a model system for protein synthesis in mammalian cells. Adenovirus messenger RNA molecules are transcribed from nuclear viral DNA and transported to the cytoplasm for translation1. Late after infection (18 h) 9–10 viral mRNA species with sedimentation values of 7S to 32S are present in polysomes (Parsons, Gardner and Green, in preparation) and specify eight viral structural proteins which account for 80–90% of the polypeptides synthesized in vivo2–4. We now describe an in vitro cell-free system, derived from KB cells infected with Ad 2, which synthesizes 8–9 viral polypeptides and can initiate protein synthesis with a special class of yeast methionyl-tRNA. In vivo and in vitro experiments suggest that methionine is the initiator amino-acid for most, if not all, adenovirus structural proteins.  相似文献   

6.
7.
Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5′ end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation.  相似文献   

8.
蛋白质翻译过程中,翻译的起始步骤是非常重要的.真核生物的翻译起始主要是通过依赖帽子结构的扫描机制进行的.近几年在翻译的研究工作中发现,在一些动物病毒中,蛋白质合成通过一种不同于扫描机制的内部起始机制起始翻译.用内部起始机制翻译的mRNA的5′端非翻译区有一个相对保守的结构,它在内部起始过程中具有重要作用,一些特异的蛋白质因子能够促进在特定位点起始翻译.  相似文献   

9.

Background and Purpose

Reducing body temperature can prolong tolerance to ischemic injury such as stroke or myocardial infarction, but is difficult and uncomfortable in awake patients because of shivering. We tested the efficacy and safety of the alpha-2-adrenergic agonist dexmedetomidine for suppressing shivering induced by a rapid infusion of cold intravenous fluids.

Methods

Ten subjects received a rapid intravenous infusion of two liters of cold (4°C) isotonic saline on two separate test days, and we measured their core body temperature, shivering, hemodynamics and sedation for two hours. On one test day, fluid infusion was preceded by placebo infusion. On the other test day, fluid infusion was preceded by 1.0 μg/kg bolus of dexmedetomidine over 10 minutes.

Results

All ten subjects experienced shivering on placebo days, with shivering beginning at a mean (SD) temperature of 36.6 (0.3)°C. The mean lowest temperature after placebo was 36.0 (0.3)°C (range 35.7-36.5°C). Only 3/10 subjects shivered on dexmedetomidine days, and the mean lowest temperature was 35.7 (0.4)°C (range 35.0-36.3°C). Temperature remained below 36°C for the full two hours in 6/10 subjects. After dexmedetomidine, subjects had moderate sedation and a mean 26 (13) mmHg reduction in blood pressure that resolved within 90 minutes. Heart rate declined a mean 23 (11) bpm after both placebo and dexmedetomidine. Dexmedetomidine produced no respiratory depression.

Conclusion

Dexmedetomidine decreases shivering in normal volunteers. This effect is associated with decreased systolic blood pressure and sedation, but no respiratory depression.  相似文献   

10.
mRNA翻译起始区的结构改变对几个外源基因翻译的影响   总被引:4,自引:0,他引:4  
为观察mRNA翻译起始区结构与基因表达的关系,利用密码子的简并性,在不改变表达产物氨基酸序列的前提下定点突变几个外源基因的5′端若干位点,使基佤表达载体重组后转录形成的mRNA翻译起始区结构发生改变。经SDS-PAGE等分析证实这些改变大大提高了外源基因的表达水平,RNAdotblot表明突变与非突变基因转录水平差别不大,表达水平的提高主要由于翻译效率的提高,mRNA翻译起始区二级结构预测提示其生  相似文献   

11.
The impact of respiratory syncytial virus (RSV) on morbidity and mortality is significant in that it causes bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and pneumonia in immunocompromised hosts. RSV activates protein kinase R (PKR), a cellular kinase relevant to limiting viral replication (Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. C., and Hunninghake, G. W. (2006) J. Immunol. 176, 1733–1740). It is activated by autophosphorylation, likely triggered by a double-stranded RNA intermediate during replication of the virus. In most instances, ph-PKR targets the α subunit of eukaryotic translation initiation factor 2 (eIF2α) protein via phosphorylation, leading to an inhibition of translation of cellular and viral protein. However, we found that although ph-PKR increases in RSV infection, significant eIF2α phosphorylation is not observed, and inhibition of protein translation does not occur. RSV infection attenuates eIF2α phosphorylation by favoring phosphatase rather than kinase activity. Although PKR is activated, RSV sequesters PKR away from eIF2α by binding of the kinase to the RSV N protein. This occurs in conjunction with an increase in the association of the phosphatase, PP2A, with eIF2α following PKR activation. The result is limited phosphorylation of eIF2α and continued translation of cellular and viral proteins.  相似文献   

12.
真核翻译起始因子(eukaryotic translation initiation factors,eIFs)是一类在蛋白质翻译起始的过程中发挥各自不同作用的蛋白质。近年来的研究发现,eIFs除了在蛋白质翻译起始中起作用外,还具有其他的作用,而且多种eIFs均与肿瘤的发生和进展相关。现就eIFs、eIFs与肿瘤的相关性及其在肿瘤治疗方面的应用等研究进展作一综述。  相似文献   

13.
Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg) is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E) in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.  相似文献   

14.
15.
16.
脑缺血再灌注损伤的主要机制是多种因素诱导的神经元凋亡。而神经元凋亡在一定程度上是可以调控和逆转的。亚低温以其对条件的要求不高实施方便等特点,奠定了其可以大范围推广的基础。作为能够辅助治疗脑缺血再灌注损伤的措施之一,亚低温的作用已经越来越多的得到了大家的重视,其脑缺血保护机制的相关研究也逐年增加。现阶段研究者对亚低温脑保护作用的研究重点放在了抑制细胞凋亡的机制上,也证实了亚低温的脑保护作用的机制和其抑制细胞凋亡密不可分。本文针对这一点,对近几年有关亚低温抑制大鼠脑缺血再灌注诱导的细胞凋亡机制的研究进展作一综述,为亚低温治疗脑缺血性疾病的临床应用提供理论支持。  相似文献   

17.
《Seminars in Virology》1997,8(3):242-255
Internal ribosome entry was first identified as a translation mechanism used by picornavirus RNAs and has since been shown to be used by other viral and eukaryotic RNAs as well. Cap-independent translation is dependent on complex interactions between eukaryotic factors and picornavirus RNAs in the cytoplasm of the host cell. Determinants for ribosome association lie in the 5′-noncoding region of viral RNAs and consist of several levels of structure including primary sequence, stem-loop structures, and perhaps tertiary folding. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins, of which only a few have been identified. Recent advances in reconstituting translationin vitrohave provided a useful means for deciphering the roles of protein and RNA factors and the steps leading to end-independent protein synthesis.  相似文献   

18.
Myotonic dystrophy types 1 and 2 (DM1 and DM2) are forms of muscular dystrophy that share similar clinical and molecular manifestations, such as myotonia, muscle weakness, cardiac anomalies, cataracts, and the presence of defined RNA-containing foci in muscle nuclei. DM2 is caused by an expansion of the tetranucleotide CCTG repeat within the first intron of ZNF9, although the mechanism by which the expanded nucleotide repeat causes the debilitating symptoms of DM2 is unclear. Conflicting studies have led to two models for the mechanisms leading to the problems associated with DM2. First, a gain-of-function disease model hypothesizes that the repeat expansions in the transcribed RNA do not directly affect ZNF9 function. Instead repeat-containing RNAs are thought to sequester proteins in the nucleus, causing misregulation of normal cellular processes. In the alternative model, the repeat expansions impair ZNF9 function and lead to a decrease in the level of translation. Here we examine the normal in vivo function of ZNF9. We report that ZNF9 associates with actively translating ribosomes and functions as an activator of cap-independent translation of the human ODC mRNA. This activity is mediated by direct binding of ZNF9 to the internal ribosome entry site sequence (IRES) within the 5′UTR of ODC mRNA. ZNF9 can activate IRES-mediated translation of ODC within primary human myoblasts, and this activity is reduced in myoblasts derived from a DM2 patient. These data identify ZNF9 as a regulator of cap-independent translation and indicate that ZNF9 activity may contribute mechanistically to the myotonic dystrophy type 2 phenotype.  相似文献   

19.
真核生物翻译起始机制   总被引:1,自引:0,他引:1  
杨蓉  潘建伟  朱睦元 《遗传》1999,21(5):67-70
蛋白质生物合成是遗传信息的翻译过程,是基因表达的第二个阶段,整个翻译包括起始、延伸和终止3个阶段。其中起始阶段最为复杂,是调控的关键。在真核生物中,在各种起始因子的参与下,通过蛋白一蛋白和蛋白HNA的相互作用,使405核糖体小亚基(预起始复合物)与mRNA相互作用,形成起始复合物,再与6OS大亚基相结合。蛋白质合成起始,形成肽健,从而进入延伸阶段关于起始作用的机理关键在于4OS/J‘亚基富集(recruit)于mRNA的过程。即核糖体是如何鉴别mRNA上的起始密码子(AUG),以适当的阅读框架开始翻译的。结合的方式目前有两…  相似文献   

20.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号