首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系   总被引:24,自引:1,他引:24  
水生植物组织内氮和磷(N和P)含量受到水体营养状况和植物生长状况影响。对长江中游江汉湖群不同营养水平湖泊中大型水生植物的N和P含量3个季度的研究表明,在不同生活型水生植物中,沉水植物主要分布在中营养到中富营养湖泊中,在富营养湖泊均无分布,浮叶和挺水植物在不同营养类型湖泊的沿岸带均有分布。N和P含量以沉水植物最高,浮叶植物次之,挺水植物最低。水生植物的N和P含量都达到或超过生长所需最低N和P阈值,代表性浮叶植物和沉水植物的N和P含量随着湖泊营养水平提高呈现规律性变化。湖泊5种常见的水生植物N和P含量与水柱中不同种类N和P浓度具有季节性相关:菱(TrapabispinosaRoxb.)春夏季P含量都与TP(总磷)和TDP(总溶解磷)明显相关,春季N含量与NH4—N(氨氮)明显相关;春季黄丝草(PotamogetonmaackianusA.Benn.)的P含量与TP明显相关,夏季与TDP明显相关,春季和夏季黄丝草和穗花狐尾藻(MyriophyllumspicatumL.)的N含量与TN(总氮)和TDN(总溶解氮)显著正相关,秋季成负相关;夏季芦苇(PhragmitescommunisTrin.)P含量与TP和TDP显著相关;春季芦苇和香蒲(TyphaorientalisPresl.)N含量与NH4N和NO2N(亚硝态氮)显著相关。    相似文献   

2.
Three species of fast growing fuel wood yielding plants locally available (Acacia holosericea, Bauhinia variegata and Cassia siamea) were characterized in respect of their responses to water stress. Seedlings (25 days) of these species, exposed to two levels of water stress (−0.5 and −1.0 MPa) induced by PEG-6000 for 24 h, were analysed for relative water content (RWC) and the contents of chlorophyll, protein, soluble sugars and proline in leaves along with activities of catalase, peroxidase and superoxide dismutase (SOD). RWC was lower in stressed compared to the unstressed seedlings. However, stress-induced decline in RWC was lowest in B. variegata. Chlorophyll and protein contents declined with increasing levels of water stress, decline being least in B. variegata. Soluble sugar and proline contents increased under water stress particularly in B. variegata. The enzyme activity of catalase (EC-1.11.1.6), peroxidase (EC-1.11.1.7) and SOD (EC-1.15.1.1) decreased with increased levels of water stress. Such decline in the activity of these enzymes was least in B. variegata. Apparently, B. variegata is potentially the species most tolerant to water stress among these three fuel wood-yielding plants.  相似文献   

3.
Seedlings of Vigna catjang Endl. were subjected to water stress for 6, S and 10 days by withholding water to investigate the activities of some oxidative enzymes and the pattern of senescence in leaves of 17-day-old seedlings undergoing water stress. Increasing duration of stress produced a proportional increase in the activities of IAA-oxidase, AA-oxidase, peroxidase and glycolate oxidase but decreased catalase activity and the contents of both chlorophyll and protein, hastening senescence. Leaf water potential and relative water content were also lowered with incresing duration of stress. Permeability was increased in leaf tissue undergoing water stress for 8 days. Seed treatment with CaCl2 (10−2 and 10−14 M ) for 6 h improved the water status of leaves, decreased tissue permeability, activities of oxidative enzymes, decline of chlorophyll and protein contents and delayed senescence compared to untreated water stressed plants.  相似文献   

4.
The vegetative growth and turion formation of Potamogeton crispus, a submersed aquatic macrophyte, was investigated under a range of phosphorus (P) concentrations (0.025, 0.25, 2.5 and 25 mg P L?1) in the ambient water free of algae, aiming to identify the responses of submersed aquatic macrophytes to nutrient enrichment, a common eutrophication problem in China and worldwide. Plant growth was not affected by different P concentrations in terms of biomass accumulation of stems and leaves. However, the contents of chlorophyll a and starch in plants decreased with increasing water P levels, whereas chlorophyll b and carotenoids declined with P level ranging from 0.025 to 2.5 mg P L?1. The soluble sugar content decreased when water P concentration increased up to 2.5 mg L?1. The P content in plants increased with increasing water P levels, whereas plant N content decreased and soluble protein increased when water P concentration increased over 0.25 mg L?1, implying that P. crispus may have modified its metabolism to adapt to water P availability. When P concentration increased to 25 mg L?1, the number and dry matter production of turions per plant decreased significantly. Meanwhile, there was a significant reduction in turion weight and the accumulations of soluble sugar and starch in turion, when water P concentration was over 0.25 mg L?1. The results suggest that turion formation in P. crispus is sensitive to P concentration in the ambient water, and high P levels may lead to decreases in P. crispus populations due to the decline in turion production.  相似文献   

5.
Water deficit is the major yield‐limiting factor of crop plants. The exposure of plants to this abiotic stress can result in oxidative damage due to the overproduction of reactive oxygen species. The aim of this work was to study the antioxidant‐stress response of drought‐tolerant (SP83‐2847 and SP83‐5073) and drought‐sensitive (SP90‐3414 and SP90‐1638) sugarcane varieties to water‐deficit stress, which was imposed by withholding irrigation for 3, 10 and 20 days. The drought‐sensitive varieties exhibited the lowest leaf relative water content and highest lipid peroxidation, hydrogen peroxide (H2O2) and proline contents during the progression of the drought‐stress condition. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX) and glutathione reductase (GR) activities changed according to variety and stress intensity. SP83‐2847 exhibited higher CAT and APX activities than the other varieties in the early stage of drought, while the activities of GPOX and GR were the highest in the other varieties at the end of the drought‐stress period. A Cu/Zn SOD isoenzyme was absent at the end of drought period from the SP90‐3414‐sensitive variety. The results indicate that lipid peroxidation and early accumulation of proline may be good biochemical markers of drought sensitivity in sugarcane.  相似文献   

6.
以6个对玉米粗缩病(MRDV)表现不同抗性的玉米品种为材料, 研究了粗缩病对玉米叶片叶绿素含量、超氧化物歧化酶(SOD)活性和可溶性蛋白含量的影响。结果表明, 感病后, 各品种叶片叶绿素含量、SOD活性和可溶性蛋白含量显著降低, 叶绿素含量和SOD活性下降幅度表现为感病品种〉中抗品种〉抗病品种, 可溶性蛋白含量下降幅度表现为抗病品种〉中抗品种〉感病品种(‘青农105’除外)。对病情指数与各生理指标变化幅度的相关分析发现, 叶绿素含量和SOD活性的下降幅度与病情指数均呈显著正相关, 除‘青农105’外的5个品种可溶性蛋白含量的下降幅度与病情指数呈极显著负相关。这说明, 品种对粗缩病的抗病性与感病后各生理指标的变化幅度有关; 品种抗性越强, 感病后叶绿素含量和SOD活性下降幅度越小, 可溶性蛋白含量下降幅度越大。  相似文献   

7.
Phenanthrene (Phe) and pyrene (Pyr) are two typical polycyclic aromatic hydrocarbons (PAHs) found in contaminated soil. This study investigated physiological and biochemical responses of rice (Oryza sativa L.) to PAH stress after they were planted in soils contaminated with Phe and Pyr, in the presence or absence of a PAH-degrading bacteria (Acinetobacteria sp.). A number of parameters including biomass and water, chlorophyll and chlorophyll a/b ratio, electrolyte leakage, activities of superoxide dismutase (SOD) and peroxidase, and soluble carbohydrate and soluble protein contents were monitored. Results show that rice plants have good resistance and tolerance to lower levels of PAHs stress, while adding high levels of PAHs to soils resulted in adverse effects on rice plants such as a reduction in biomass and damage to photosynthetic function. Water content and SOD activities were the most sensitive indicators of PAH stress among the observed parameters. Inoculation with PAH-degrading bacteria promoted growth and photosynthesis of rice.  相似文献   

8.
《Aquatic Botany》2001,69(2-4):177-193
The eutrophication of lakes in central Europe has been assumed to be at least partly responsible for a widespread die-back of fringing Phragmites australis reeds. To test the ‘eutrophication hypothesis’ on a broad data basis, lakeshore reed stands at 41 lakes of known trophic status and 10 stands in waste water and sludge treatment plants in Denmark and north Germany (North data subset, n=26), and south Germany, Switzerland and Austria (South data subset, n=25) were investigated. A total of 24 culm performance variables in three different shoot classes were analyzed by two-way ANOVA with the geographic origin and the ‘relative trophic index’ as factors. The geographic origin had a pronounced influence on culm architecture, whereas the effect of the trophic level mostly failed to be significant in the ANOVA. The culms from the North reed stands showed a weaker performance throughout than those from the South stands for a given trophic level. However, some of the morphometric traits in the North stands were significant positively correlated with the trophic level but very few significant cases were observed in the South data subset. Three hypotheses are discussed to explain the geographic effect: climatic effects, geochemistry of lake water and sediments, and trophic history of the lakes. It is concluded that lake eutrophication does not influence the culm performance negatively and that eutrophication cannot be regarded as a general cause in reed decline.  相似文献   

9.
Eight somaclonal variants with enhanced drought tolerance were isolated from regenerated plants of triploid bermudagrass (Cynodon dactylon × Cynodon transvaalensis cv., TifEagle). Three of them (10-17, 89-02, 117-08) with strong drought tolerance were selected for investigations of physiological responses to drought stress. Compared to the parent control, TifEagle, the somaclonal variants had higher relative water contents and relative growth, and lower ion leakages in the greenhouse tests, while no difference in evapotranspirational water losses and soil water contents was observed between the variants and TifEagle. The variants also had less leaf firing in the field tests under drought stress. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities decreased gradually in responses to drought stress in all plants and exhibited negative correlations with ion leakage, indicating that the declined activities of these antioxidant enzymes were associated with drought injury in the triploid bermudagrass. However, CAT activities were significantly higher in all three variants than in TifEagle during drought stress. Two variants, 10-17 and 89-02, also had significantly higher APX activities than TifEagle before and during the first 4 days of drought treatments. These two lines also showed higher SOD activities after prolonged drought stress. Proline, total soluble sugars and sucrose were accumulated under drought stress in all plants and exhibited positive correlations with ion leakage. More proline and sugars were accumulated in TifEagle than in the variants. The results indicated that higher activities of the antioxidant enzymes in the variants during drought stress are associated with their increased drought tolerance.  相似文献   

10.
The growth of the wild-type and three salt tolerant mutants of barnyard grass ( Echinochloa crusgalli L.) under salt stress was investigated in relation to oxidative stress and activities of the antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), phenol peroxidase (POD: EC 1.11.1.7), glutathione reductase (GR: EC 1.8.1.7) and ascorbate peroxidase (APX: EC 1.11.1.1). The three mutants ( fows B17, B19 and B21) grew significantly better than the wild-type under salt stress (200 m M NaCl) but some salt sensitive individuals were still detectable in the populations of the mutants though in smaller numbers compared with the wild-type. The salt sensitive plants had slower growth rates, higher rates of lipid peroxidation and higher levels of reactive oxygen species (ROS) in their leaves compared with the more tolerant plants from the same genotype. These sensitivity responses were maximized when the plants were grown under high light intensity suggesting that the chloroplast could be a main source of ROS under salt stress. However, the salt sensitivity did not correlate with reduced K +/Na + ratios or enhanced Na + uptake indicating that the sensitivity responses may be mainly because of accumulation of ROS rather than ion toxicity. SOD activities did not correlate to salt tolerance. Salt stress resulted in up to 10-fold increase in CAT activity in the sensitive plants but lower activities were found in the tolerant ones. In contrast, the activities of POD, APX and GR were down regulated in the sensitive plants compared with the tolerant ones. A correlation between plant growth, accumulation of ROS and differential modulation of antioxidant enzymes is discussed. We conclude that loss of activities of POD, APX and GR causes loss of fine regulation of ROS levels and hence the plants experience oxidative stress although they have high CAT activities.  相似文献   

11.
刺槐幼苗在PEG渗透胁迫下,相对含水量(RWC)降低,质膜透性增加,游离腐胺、脯氨酸的积累和超氧物歧化酶(SOD)、过氧化氢酶(CAT)活性提高,腐胺、亚精胺比值(Put/Spd)增加。渗透胁迫下用多效唑(PP_(333))作浸根和浸种处理,提高刺槐幼苗RWC和游离脯氨酸含量,减少质膜透性和 Put/Spd比值,降低SOD、CAT活性和腐胺含量。腐胺水平的变化与幼苗的水分状况有关,与质膜透性的变化趋势一致。  相似文献   

12.
为探究大型浅水湖泊中沉水植物对浊度的影响,对大型浅水湖泊——太湖(有草区和无草区)进行了为期1年的野外调查,将浊度分为藻类浊度(TurbAlg)和非藻类浊度(TurbNonAlg),分析其变异规律及其对总浊度(TurbTot)贡献率的差异。结果显示:(1)太湖水体中TurbNonAlg(年均值为2.45/m)为主要的浊度组分,占总浊度(2.88/m)的83%,春季时高达89%;(2)有草区TurbNonAlg(2.52/m)和无草区的(2.37/m)差异不显著(P>0.05);(3)在相同TP范围内,有草区TurbAlg (0.21/m)和无草区的(0.32/m)无明显差异(P>0.05),在夏季时甚至略高于后者。研究表明,在大型浅水湖泊中,沉水植物对水体浊度的抑制效果有限,对非藻类浊度和藻类浊度均未起到有效的控制作用。因此,在相同营养条件下,大型浅水湖泊更易发生稳态转换,且发生转换后恢复原始状态的难度也可能更大。  相似文献   

13.
Modulation of water relations, activities of antioxidant enzymes and ion accumulation was assessed in the plants of two wheat cultivars S-24 (salt tolerant) and MH-97 (moderately salt sensitive) subjected to saline conditions and glycinebetaine (GB) applied foliarly. Different levels of GB, i.e., 0 (unsprayed), 50 and 100 mM (in 0.10% Tween-20 solution) were applied to the wheat plants at the vegetative growth stage. Leaf water potential, leaf osmotic potential and turgor potential were decreased due to salt stress. Salt stress increased the Na+ and Cl accumulation coupled with a decrease in K+ and Ca2+ in the leaves and roots of both cultivars thereby decreasing tissue K+/Na+ and Ca2+/Na+ ratios. Furthermore, salt stress decreased the activities of superoxide dismutase (SOD), whereas it increased the activities of catalase (CAT) and peroxidase (POD) in both wheat cultivars. However, accumulation of GB in the leaves of both wheat cultivars was consistently increased with an increase in concentration of exogenous GB application under both non-saline and saline conditions. Accumulation of Na+ was decreased with an increase in K+ accumulation upon a consistent increase in GB accumulation under salt stress conditions thereby resulting in better K+/Na+ and Ca2+/Na+ ratios in the leaves and roots. High accumulation of GB and K+ mainly contributed to osmotic adjustment, which is one of the factors known to be responsible for improving growth and yield under salt stress. The activities of all antioxidant enzymes, SOD, CAT and POD were enhanced by GB application in cv. MH-97 under saline conditions, whereas all these except SOD were reduced in cv. S-24. It is likely that both applied GB and intrinsic SOD scavenged ROS in the tolerant cultivar thereby resulting into low activities of CAT and POD enzymes under salt stress. In conclusion, the adverse effects of salt stress on wheat can be alleviated by the exogenous application of 100 mM GB by modulating activities of antioxidant enzymes and changes in water relations and ion homeostasis. Furthermore, effectiveness of GB application on regulation of activities of antioxidant enzymes was found to be cultivar-specific.  相似文献   

14.
镉胁迫下大豆生长发育的生理生态特征   总被引:12,自引:1,他引:12  
采用土壤盆栽试验方法,研究了不同浓度Cd2+胁迫对大豆整个生长发育周期的生长以及叶片叶绿素含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和丙二醛(MDA)含量的生理生态适应性变化过程。结果表明,(1)Cd2+胁迫对大豆整个生活周期的叶绿素含量、POD活性、SOD活性及MDA含量的影响都是极显著的(P0.01);(2)短时间、低浓度的Cd2+胁迫对大豆植株的生长发育有刺激效应,高浓度、长时间的Cd2+胁迫对大豆植株构成明显的抑制效应;大豆株高增长开始受到抑制的Cd2+浓度为1.00mg·kg-1,远低于大豆生物量的增长开始受抑制的Cd2+浓度(2.50mg·kg-1);(3)当Cd2+浓度超过一定水平时,大豆植株生物量和株高的抑制程度与外源Cd2+浓度呈极显著的正相关(P0.01),对土壤Cd2+污染程度具有指示作用,且大豆植株高度与其生物量相比,株高对Cd2+污染具有更好的指示作用;大豆幼苗期叶绿素含量对镉的敏感性高于开花结荚期和成熟期的敏感性;(4)大豆POD、SOD活性的增加,能在一定程度上减轻Cd2+胁迫引起的膜脂过氧化造成的伤害作用;在Cd2+达到2.50mg·kg-1水平时,植物保护性酶系统活性的提高已经不足以弥补因Cd2+胁迫对大豆植株造成的伤害;大豆幼苗期和花荚期叶片的POD活性对土壤Cd2+污染程度具有较好的指示作用,而大豆花荚期和成熟期叶片的SOD活性对土壤Cd2+污染程度具有较好的指示作用;在Cd2+胁迫下大豆MDA含量增加,表明细胞膜脂过氧化作用加强。  相似文献   

15.
树种保护酶活性与PV曲线水分参数变化的关系   总被引:19,自引:0,他引:19  
在水分胁迫条件下,树种间SOD(超氧化物歧化酶)活性与其DI(抗旱性指数)值的排序结果基本一致,表明SOD活性变化所反映的树木抗氧化伤害力大小与PV曲线水人参数所指示的树木耐旱性强弱具有密切的正相关性。但是树种间POD(过氧化物酶)活性变化与DI值之间的关系则不密切。其原因:①清除H2O2的抗氧化酶类较多(POD只是这一);②某些树种中且存在歧化H2O2的抗氧化剂。在水分胁迫阶段,海红的DI值最大  相似文献   

16.
以扬麦16和徐麦30为试验材料,利用人工气候室模拟低温逆境,研究拔节期-3 ℃和-5 ℃低温胁迫对小麦植株受冻率、叶片内源激素含量和抗氧化酶活性的影响.结果表明: 随着处理温度的降低、胁迫时间的延长,小麦植株冻害等级与冻害指数增加,-5 ℃处理72 h两品种五级冻害率均为100%.低温处理结束当天,小麦叶片中内源激素脱落酸(ABA)、玉米素核苷(ZR)含量、抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性随胁迫程度加重呈先升高后降低的趋势;处理结束后3 d,ABA、ZR含量及抗氧化酶活性较处理结束当天升高;至处理结束后6 d,与自然生长的对照处理接近.低温胁迫叶片中赤霉素(GA3)含量下降,处理结束后3和6 d,扬麦16叶片中GA3含量呈上升趋势,徐麦30则表现为先升高后下降.-5 ℃ 72 h重度胁迫处理叶片中ABA、ZR、GA3含量和SOD、POD、CAT活性均较对照显著下降.相关分析表明,较高的ABA、ZR含量、SOD、POD、CAT活性以及较低的GA3含量可减缓低温胁迫对小麦植株的伤害.  相似文献   

17.
气候变化与人类活动双重驱动的冷水湖泊富营养化   总被引:1,自引:0,他引:1  
吕笑天  吕永龙  宋帅  王铁宇 《生态学报》2017,37(22):7375-7386
富营养化对水生生态系统造成的负面影响已在世界范围内广泛发生,尤其对淡水水源地湖泊的水环境质量影响深远,进而引起当地居民的饮用水安全与健康隐患。在人类活动和气候变化的双重驱动下,富营养化辐射的范围不断扩大,从过去主要集中于温带大型浅水湖泊已经扩展到寒冷地区的冷水湖泊。分析了近年来世界范围内高寒地区冷水湖泊富营养化的趋势特征与研究进展,探讨了气候变化、人类干扰(农业活动、畜牧业生产、管理措施不当等)在不同地区冷水湖泊富营养化进程中的作用。在未来的研究中,应进一步加强对冷水湖泊富营养化机制的探讨,并对已有富营养化症状的湖泊进行生态修复,以确保冷水湖泊生态系统健康并改善饮用水源地的环境质量。  相似文献   

18.
Eutrophication is common in shallow lakes in lowland areas. In their natural state, most shallow lakes would have clear water and a thriving aquatic plant community. However, eutrophication often causes turbid water, high algal productivity, and low species diversity and abundance of submerged macrophytes. A key indicator of the ecological state of lake ecosystems is the maximum growing depth (MGD) of aquatic plants. However, few studies have yet quantified the relationship between changes in external phosphorus (P) input to a lake and associated variation in MGD. This study examines the relationship between these variables in Loch Leven, a shallow, eutrophic loch in Scotland, UK. A baseline MGD value from 1905 and a series of more recent MGD values collected between 1972 and 2006 are compared with estimated P loads over a period of eutrophication and recovery. The results suggest a close relationship between changes in MGD of macrophytes and changes in the external P load to the loch. Variation in MGD reflected the ‘light history’ that submerged macrophytes had been exposed to over the 5-year period prior to sampling, rather than responding to short term, within year, variations in water clarity. This suggests that changes in macrophyte MGD may be a good indicator of overall, long term, changes in water quality that occur during the eutrophication and restoration of shallow lakes.  相似文献   

19.
This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.  相似文献   

20.
The relationship between surface sediment diatoms and summer water quality was investigated at 49 lakes in the middle and lower reaches of the Yangtze River. Lakes ranging from oligomesotrophic to hypereutrophic were examined, providing an obvious nutrient gradient. With the shift from mesotrophic to eutrophic levels, diatom multi-ecotypes dominated by epiphytic and facultative planktonic taxa were replaced by nutrient-tolerant planktonic taxa, such as Cyclotella meneghiniana Skvortzow, C. atomus Hustedt,Cyclostephanos Round, and Stephanodiscus Ehrenberg etc., reflecting the nutrient changes in the lake.The relationship between diatoms and summer water quality indices was explored further using numeric analysis. Canonical correspondence analysis (CCA) with forward selection and a Monte Carlo permutation test revealed that of all 25 summer water environmental variables, total phosphorus (TP), chlorophyll a (Chzl a), Secchi depth (SD), dissolved inorganic phosphorus, C1-, SO42-, Mg2 , CO32-, and water depth were significant variables (P<0.05) in explaining diatom distributions. Of these, TP, Chl a, SD, and C1-, were the most important variables. The result of the correlation analysis also showed that a significant correlation exists among these variables, implying that these indices are either interconnected or independent in explaining the diatom data. For phosphorus-limited sites, TP was the most significant variable affecting the diatoms, also affecting changes in Chl a, SD, and iron concentrations. The independence of Chl a may be related to algal competition induced by lake eutrophication, resulting in the feedback to diatom community.In addition to TP, SD can be related to sediment disturbance by wave action and the growth of macrophytes in large shallow lakes. These relationships between diatom ecotypes and water quality provide the basis for a future quantitative reconstruction of historic lake nutrient evolution in the study area and will also provide a wealth of modern ecological knowledge that can be used to interpret fossil diatom records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号