首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of serine, threonine, and tyrosine controls fundamental mammalian cell events and is achieved by kinases which, in turn, are in dynamic relationship with phosphatases. Few selective inhibitors of protein tyrosine and dual specificity phosphatases are readily available. Based on SAR studies of naturally occurring phosphatase inhibitors and following up on previously published research, we have designed a new pharmacophore model V and synthesized a new library of functional analogues of V. All synthetic steps were carried out and optimized employing combinatorial chemistry methods on Wang resin. All compounds were tested in vitro for their ability to inhibit recombinant human protein tyrosine (PTP1B) and dual-specificity (Cdc25B(2) and VHR) phosphatases. Three of the approximately 70 compounds in our library inhibited Cdc25B(2) by 50% at 375-490 microM. No compounds inhibited PTP1B, and only one blocked VHR. Cell-culture studies revealed no toxicity to human breast cancer cells with two of the phosphatase inhibitors.  相似文献   

2.
Protein-tyrosine phosphatases (PTPases) form a large family of enzymes that serve as key regulatory components in signal transduction pathways. Defective or inappropriate regulation of PTPase activity leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases including cancers and diabetes. For example, recent gene knockout studies in mice identify PTP1B as a promising target for anti-diabetes/obesity drug discovery. Thus, there is intense interest in obtaining specific and potent PTPase inhibitors for biological studies and pharmacological development. However, given the highly conserved nature of the PTPase active site, it is unclear whether selectivity in PTPase inhibition can be achieved. We describe a combinatorial approach that is designed to target both the active site and a unique peripheral site in PTP1B. Compounds that can simultaneously associate with both sites are expected to exhibit enhanced affinity and specificity. We also describe a novel affinity-based high-throughput assay procedure that can be used for PTPase inhibitor screening. The combinatorial library/high-throughput screen protocols furnished a small molecule PTP1B inhibitor that is both potent (K(i) = 2.4 nm) and selective (little or no activity against a panel of phosphatases including Yersinia PTPase, SHP1, SHP2, LAR, HePTP, PTPalpha, CD45, VHR, MKP3, Cdc25A, Stp1, and PP2C). These results demonstrate that it is possible to acquire potent, yet highly selective inhibitors for individual members of the large PTPase family of enzymes.  相似文献   

3.
Dual specificity protein phosphatases (DSPases) are key regulators of signal transduction, oncogenesis and the cell cycle. Few potent or specific inhibitors of DSPases, however, are readily available for these pharmacological targets. We have used a combinatorial/parallel synthetic approach to rigidify the variable core region and modify the side chains of 4-(benzyl-(2-[2,5-diphenyl-oxazole-4-carbonyl)-amino]-ethyl)-carbamoyl)- 2-decanoylamino butyric acid (or SC-alphaalphadelta9), which is the most active element in a previously described library of phosphatase inhibitors (Rice, R. L.; Rusnak, J. M.; Yokokawa, F.; Yokokawa, S.; Messner, D. J.; Boynton, A. L.; Wipf, P.; Lazo, J. S. Biochemistry 1997, 36, 15965). Several analogues were identified as effective inhibitors of the protein tyrosine phosphatase (PTPase) PTP1B and the DSPases VHR and Cdc25B2. Two compounds, FY3-alphaalpha09 and FY21-alphaalpha09, were partial competitive inhibitors of Cdc25B2 with Ki values of 7.6+/-0.5 and 1.6+/-0.2 microM, respectively. FY21-alphaalpha09 possessed only moderate activity against PTP1B. Consistent with its in vitro anti-phosphatase activity, FY21-alphaalpha09 inhibited growth in MDA-MB-231 and MCF-7 human breast cancer cell lines. FY21-alphaalpha09 also inhibited the G2/M transition in tsFT210 cells, consistent with Cdc25B inhibition. Several architectural requirements for DSPase inhibition were revealed through modification of the side chain moieties or variable core region of the pharmacophore, which resulted in decreased compound potency. The structure of FY21-alphaalpha09 provides a useful platform from which additional potent and more highly selective phosphatase inhibitors might be generated.  相似文献   

4.
Mitogen-activated protein kinase (MAPK) family members such as c-jun N-terminal kinase (JNK) may act as signal transducers early during pancreatitis development and evidence indicates that MAPK phosphatases (MKP) downregulate MAPK. We therefore investigated expression and regulation of pancreatic MKP in vivo. Pancreatic MKP mRNA levels were near or below the detection threshold in unstimulated animals. Cerulein hyperstimulation strongly induced MKP-1, MKP-3, and MKP-5 expression, peaking 30 to 60 min after treatment. Thus, MKP's clearly are early responsive genes during pancreatitis induction. Interestingly, inhibition of MKP-1 expression by Ro-31-8220 maximally induced activation of JNK but not of p38 and ERK in acutely isolated acini. These effects indicate that JNK may indeed be a preferred MKP-1 substrate in vivo.  相似文献   

5.
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) negatively regulate MAPK activity. In the present study, we have identified a novel MKP, designated MKP-7, and mapped it to human chromosome 12p12. MKP-7 possesses a long C-terminal stretch containing both a nuclear export signal and a nuclear localization signal, in addition to the rhodanese-like domain and the dual specificity phosphatase catalytic domain, both of which are conserved among MKP family members. When expressed in mammalian cells MKP-7 protein was localized exclusively in the cytoplasm, but this localization became exclusively nuclear following leptomycin B treatment or introduction of a mutation in the nuclear export signal. These findings indicate that MKP-7 is the first identified leptomycin B-sensitive shuttle MKP. Forced expression of MKP-7 suppressed activation of MAPKs in COS-7 cells in the order of selectivity, JNK p38 > ERK. Furthermore, a mutant form MKP-7 functioned as a dominant negative particularly against the dephosphorylation of JNK, suggesting that MKP-7 works as a JNK-specific phosphatase in vivo. Co-immunoprecipitation experiments and histological analysis suggested that MKP-7 determines the localization of MAPKs in the cytoplasm.  相似文献   

6.
The extracellular signal-regulated protein kinase 2 (ERK2) is the founding member of a family of mitogen-activated protein kinases (MAPKs) that are central components of signal transduction pathways for cell proliferation, stress responses, and differentiation. The MAPKs are unique among the Ser/Thr protein kinases in that they require both Thr and Tyr phosphorylation for full activation. The dual phosphorylation of Thr-183 and Tyr-185 in ERK2 is catalyzed by MAPK/ERK kinase 1 (MEK1). However, the identity and relative activity of protein phosphatases that inactivate ERK2 are less well established. In this study, we performed a kinetic analysis of ERK2 dephosphorylation by protein phosphatases using a continuous spectrophotometric enzyme-coupled assay that measures the inorganic phosphate produced in the reaction. Eleven different protein phosphatases, many previously suggested to be involved in ERK2 regulation, were compared, including tyrosine-specific phosphatases (PTP1B, CD45, and HePTP), dual specificity MAPK phosphatases (VHR, MKP3, and MKP5), and Ser/Thr protein phosphatases (PP1, PP2A, PP2B, PP2C alpha, and lambda PP). The results provide biochemical evidence that protein phosphatases display exquisite specificity in their substrate recognition and implicate HePTP, MKP3, and PP2A as ERK2 phosphatases. The fact that ERK2 inactivation could be carried out by multiple specific phosphatases shows that signals can be integrated into the pathway at the phosphatase level to determine the cellular response to external stimuli. Important insights into the roles of various protein phosphatases in ERK2 kinase signaling are obtained, and further analysis of the mechanism by which different protein phosphatases recognize and inactivate MAPKs will increase our understanding of how this kinase family is regulated.  相似文献   

7.
8.
Protein-tyrosine phosphatases (PTPs) are important signaling enzymes that have emerged within the last decade as a new class of drug targets. It has previously been shown that suramin is a potent, reversible, and competitive inhibitor of PTP1B and Yersinia PTP (YopH). We therefore screened 45 suramin analogs against a panel of seven PTPs, including PTP1B, YopH, CD45, Cdc25A, VHR, PTPalpha, and LAR, to identify compounds with improved potency and specificity. Of the 45 compounds, we found 11 to have inhibitory potency comparable or significantly improved relative to suramin. We also found suramin to be a potent inhibitor (IC(50) = 1.5 microm) of Cdc25A, a phosphatase that mediates cell cycle progression and a potential target for cancer therapy. In addition we also found three other compounds, NF201, NF336, and NF339, to be potent (IC(50) < 5 microm) and specific (at least 20-30-fold specificity with respect to the other human PTPs tested) inhibitors of Cdc25A. Significantly, we found two potent and specific inhibitors, NF250 and NF290, for YopH, the phosphatase that is an essential virulence factor for bubonic plague. Two of the compounds tested, NF504 and NF506, had significantly improved potency as PTP inhibitors for all phosphatases tested except for LAR and PTPalpha. Surprisingly, we found that a significant number of these compounds activated the receptor-like phosphatases, PTPalpha and LAR. In further characterizing this activation phenomenon, we reveal a novel role for the membrane-distal cytoplasmic PTP domain (D2) of PTPalpha: the direct intramolecular regulation of the activity of the membrane-proximal cytoplasmic PTP domain (D1). Binding of certain of these compounds to PTPalpha disrupts D1-D2 basal state contacts and allows new contacts to occur between D1 and D2, which activates D1 by as much as 12-14-fold when these contacts are optimized.  相似文献   

9.
The synthesis and biological activity of a series of 2-[(4-methylthiopyridin-2-yl)methylsulfinyl]benzimidazoles are described. These compounds have potent inhibitory effects against the protein tyrosine phosphatase activity of CD45. Enzymatic analysis with several phosphatases revealed that compound 5a had high specificity for CD45 compared with serine/threonine phosphatases (PP1, PP2A), tyrosine phosphatases (LAR, PTP1B and PTP-S2) and dual phosphatase (VHR).  相似文献   

10.
Three dual-specific phosphatases [DSPs], IphP, VHR, and Cdc14, and three protein-tyrosine phosphatases [PTPs], PTP-1B, PTP-H1, and Tc-PTPa, were challenged with a set of low molecular weight phosphoesters to probe the factors underlying the distinct substrate specificities displayed by these two mechanistically homologous families of protein phosphatases. It was observed that beta-naphthyl phosphate represented an excellent general substrate for both PTPs and DSPs. While DSPs tended to hydrolyze alpha-naphthyl phosphate at rates comparable to that of the beta-isomer, the PTPs PTP-1B and Tc-PTPa did not. PTP-H1, however, displayed high alpha-naphthyl phosphatase activity. Intriguingly, PTP-H1 also displayed much higher protein-serine phosphatase activity in vitro, 0.2-0.3% that toward equivalent tyrosine phosphorylated proteins, than did PTP-1B or Tc-PTPa. The latter two PTPs discriminated between the serine- and tyrosine-phosphorylated forms of two test proteins by factors of >/=10(4)-10(6). While free phosphoserine represented an extremely poor substrate for all of the DSPs examined, the addition of a hydrophobic "handle" to form N-(cyclohexanecarboxyl)-O-phospho-l-serine produced a compound that was hydrolyzed by IphP with high efficiency, i.e., at a rate comparable to that of free phosphotyrosine or p-nitrophenyl phosphate. VHR also hydrolyzed N-(cyclohexanecarboxyl)-O-phospho-l-serine (1 mM) at a rate approximately one-tenth that of beta-naphthyl phosphate. None of the PTPs tested exhibited significant activity against this compound. However, N-(cyclohexanecarboxyl)-O-phospho-l-serine did not prove to be a universal substrate for DSPs as Cdc14 displayed little propensity to hydrolyze it.  相似文献   

11.
The Cdc25 dual specificity phosphatases coordinate cell cycle progression, but potent and selective inhibitors have generally been unavailable. In the present study, we have examined one potential inhibitor, 6-chloro-7-(2-morpholin-4-ylethylamino)-quinoline-5,8-dione (NSC 663284), that was identified in the compound library of the National Cancer Institute [corrected]. We found that NSC 663284 arrested synchronized cells at both G(1) and G(2)/M phase, and blocked dephosphorylation and activation of Cdk2 and Cdk1 in vivo, as predicted for a Cdc25 inhibitor. Using the natural Cdc25A substrate, Tyr(15)-phosphorylated Cdk2/cyclin A, we demonstrated that NSC 663284 blocked reactivation of Cdk2/cyclin A kinase by Cdc25A catalytic domain in vitro. In-gel trypsin digestion followed by capillary liquid chromatography-electrospray ionization mass spectrometry and tandem mass spectrometry revealed the direct binding of NSC 663284 to one of the two serine residues in the active site loop HCEFSSER of the Cdc25A catalytic domain. Cdc25 binding and inhibition could contribute to the anti-proliferative activity of NSC 663284 and its ability to arrest cell cycle progression. Moreover, NSC 663284 should be a valuable reagent to probe the actions of Cdc25 phosphatases within cells and may also be useful structure for the design of more potent and selective antiproliferative agents.  相似文献   

12.
Wancket LM  Frazier WJ  Liu Y 《Life sciences》2012,90(7-8):237-248
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression.  相似文献   

13.
Taing M  Keng YF  Shen K  Wu L  Lawrence DS  Zhang ZY 《Biochemistry》1999,38(12):3793-3803
Several protein tyrosine phosphatases (PTPases) have been implicated as regulatory agents in the insulin-stimulated signal transduction pathway, including PTP1B, PTPalpha, and LAR. Furthermore, since all three enzymes are suggested to serve as negative regulators of insulin signaling, one or more may play a pivotal role in the pathogenesis of insulin resistance. We report herein the acquisition of highly selective PTP1B-targeted inhibitors. We recently demonstrated that PTP1B contains two proximal aromatic phosphate binding sites [Puius, Y. A., Zhao, Y., Sullivan, M., Lawrence, D. S., Almo S. C., and Zhang, Z. Y. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 13420-5], and we have now employed this structural feature to design and synthesize an array of bis(aryldifluorophosphonates). Not only do the lead compounds serve as potent inhibitors of PTP1B but, in addition, several exhibit selectivities for PTP1B versus PTPalpha, LAR, and VHR that are greater than 2 orders in magnitude.  相似文献   

14.
Mitogen-activated protein kinase phosphatase-1 (MKP-1) is a dual specificity phosphatase that is overexpressed in many human tumors and can protect cells from apoptosis caused by DNA-damaging agents or cellular stress. Small molecule inhibitors of MKP-1 have not been reported, in part because of the lack of structural guidance for inhibitor design and definitive assays for MKP-1 inhibition in intact cells. Herein we have exploited a high content chemical complementation assay to analyze a diverse collection of pure natural products for cellular MKP-1 inhibition. Using two-dimensional Kolmogorov-Smirnov statistics, we identified sanguinarine, a plant alkaloid with known antibiotic and antitumor activity but no primary cellular target, as a potent and selective inhibitor of MKP-1. Sanguinarine inhibited cellular MKP-1 with an IC50 of 10 microM and showed selectivity for MKP-1 over MKP-3. Sanguinarine also inhibited MKP-1 and the MKP-1 like phosphatase, MKP-L, in vitro with IC50 values of 17.3 and 12.5 microM, respectively, and showed 5-10-fold selectivity for MKP-3 and MKP-1 over VH-1-related phosphatase, Cdc25B2, or protein-tyrosine phosphatase 1B. In a human tumor cell line with high MKP-1 levels, sanguinarine caused enhanced ERK and JNK/SAPK phosphorylation. A close congener of sanguinarine, chelerythrine, also inhibited MKP-1 in vitro and in whole cells, and activated ERK and JNK/SAPK. In contrast, sanguinarine analogs lacking the benzophenanthridine scaffold did not inhibit MKP-1 in vitro or in cells nor did they cause ERK or JNK/SAPK phosphorylation. These data illustrate the utility of a chemical complementation assay linked with multiparameter high content cellular screening.  相似文献   

15.
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.  相似文献   

16.
Lu L  Gao X  Zhu M  Wang S  Wu Q  Xing S  Fu X  Liu Z  Guo M 《Biometals》2012,25(3):599-610
The inhibitory effects of three biguanido-oxovanadium complexes ([VO(L(1-3))(2)]·nH(2)O: HL(1) = metformin, HL(2) = phenformin, HL(3) = moroxydine) against four protein tyrosine phosphatases (PTPs) and an alkaline phosphatase (ALP) were investigated. The complexes display strong inhibition against PTP1B and TCPTP (IC(50), 80-160 nM), a bit weaker inhibition against HePTP (IC(50), 190-410 nM) and SHP-1(IC(50), 0.8-3.3 μM) and much weaker inhibition against ALP (IC(50), 17-35 μM). Complex 3 is about twofold less potent against PTP1B, TCPTP and HePTP than complexes 1 and 2, while complex 2 inhibits SHP-1 more strongly (about three to fourfold) than the other two complexes. These results suggest that the structures of the ligands slightly influence the potency and selectivity against PTPs. The complexes inhibit PTP1B and ALP with a typical competitive type.  相似文献   

17.
Type 2 diabetes is increasing at an alarming rate worldwide, and there has been a considerable effort in several laboratories to identify suitable targets for the design of drugs against the disease. To this end, the protein tyrosine phosphatases that attenuate insulin signaling by dephosphorylating the insulin receptor (IR) have been actively pursued. This is because inhibiting the phosphatases would be expected to prolong insulin signaling and thereby facilitate glucose uptake and, presumably, result in a lowering of blood glucose. Targeting the IR protein tyrosine phosphatase, therefore, has the potential to be a significant disease-modifying strategy. Several protein tyrosine phosphatases (PTPs) have been implicated in the dephosphorylation of the IR. These phosphatases include PTPalpha, LAR, CD45, PTPepsilon, SHP2, and PTP1B. In most cases, there is evidence for and against the involvement of the phosphatases in insulin signaling. The most convincing data, however, support a critical role for PTP1B in insulin action. PTP1B knockout mice are not only insulin sensitive but also maintain euglycemia (in the fed state), with one-half the level of insulin observed in wild-type littermates. Interestingly, these mice are also resistant to diet-induced obesity when fed a high-fat diet. The insulin-sensitive phenotype of the PTP1B knockout mouse is reproduced when the phosphatase is also knocked down with an antisense oligonucleotide in obese mice. Thus PTP1B appears to be a very attractive candidate for the design of drugs for type 2 diabetes and obesity.  相似文献   

18.
Mitogen-activated protein (MAP) kinase phosphatases (MKPs) are dual-specificity phosphatases that dephosphorylate phosphothreonine and phosphotyrosine residues within MAP kinases. Here, we describe a novel posttranslational mechanism for regulating MKP-3/Pyst1/DUSP6, a member of the MKP family that is highly specific for extracellular signal-regulated kinase 1 and 2 (ERK1/2) inactivation. Using a fibroblast model in which the expression of either MKP-3 or a more stable MKP-3-green fluorescent protein (GFP) chimera was induced by tetracycline, we found that serum induces the phosphorylation of MKP-3 and its subsequent degradation by the proteasome in a MEK1 and MEK2 (MEK1/2)-ERK1/2-dependent manner. In vitro phosphorylation assays using glutathione S-transferase (GST)-MKP-3 fusion proteins indicated that ERK2 could phosphorylate MKP-3 on serines 159 and 197. Tetracycline-inducible cell clones expressing either single or double serine mutants of MKP-3 or MKP-3-GFP confirmed that these two sites are targeted by the MEK1/2-ERK1/2 module in vivo. Double serine mutants of MKP-3 or MKP-3-GFP were more efficiently protected from degradation than single mutants or wild-type MKP-3, indicating that phosphorylation of either serine by ERK1/2 enhances proteasomal degradation of MKP-3. Hence, double mutation caused a threefold increase in the half-life of MKP-3. Finally, we show that the phosphorylation of MKP-3 has no effect on its catalytic activity. Thus, ERK1/2 exert a positive feedback loop on their own activity by promoting the degradation of MKP-3, one of their major inactivators in the cytosol, a situation opposite to that described for the nuclear phosphatase MKP-1.  相似文献   

19.
Fu H  Park J  Pei D 《Biochemistry》2002,41(34):10700-10709
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that catalyze the hydrolytic removal of the phosphoryl group from phosphotyrosyl (pY) proteins. PTP inhibitors provide potential treatment of human diseases/conditions such as diabetes and obesity as well as useful tools for studying the function of PTPs in signaling pathways. In this work, we have shown that certain aryl-substituted aldehydes act as reversible, slow-binding inhibitors of modest potency against PTP1B, SHP-1, and a dual-specificity phosphatase, VHR. Attachment of the tripeptide Gly-Glu-Glu to the para position of cinnamaldehyde resulted in an inhibitor (Cinn-GEE) of substantially increased potency against all three enzymes (e.g., K(I) = 5.4 microM against PTP1B). The mechanism of inhibition was investigated using Cinn-GEE specifically labeled with (13)C at the aldehyde carbon and (1)H-(13)C heteronuclear single-quantum coherence spectroscopy. While Cinn-GEE alone showed a single cross-peak at delta 9.64 ((1)H) and delta 201 ((13)C), the PTP1B/Cinn-GEE complex showed three distinct cross-peaks at delta 7.6-7.8 ((1)H) and 130-137 ((13)C). Mutation of the catalytic cysteine (Cys-215 in PTP1B) into alanine had no effect on the cross-peaks, whereas mutation of a conserved active-site arginine (Arg-221 in PTP1B) to alanine abolished all three cross-peaks. Similar experiments with Cinn-GEE that had been labeled with (13)C at the benzylic position revealed a change in the hybridization state (from sp(2) to sp(3)) for the benzylic carbon as a result of binding to PTP1B. These results rule out the possibility of a free aldehyde, aldehyde hydrate, or hemithioacetal as the enzyme-bound inhibitor form. Instead, the data are consistent with the formation of an enamine between the aldehyde group of the inhibitor and the guanidine group of Arg-221 in the PTP1B active site. These aldehydes may provide a general core structure that can be further developed into highly potent and specific PTP inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号