首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
In this study we demonstrate that the activator protein-1 (AP-1) DNA motif, initially considered to be unresponsive to cyclic AMP (cAMP), does function as a cAMP-response element in PC12 cells. A luciferase reporter gene driven by the collagenase promoter that contains the AP-1 motif is responsive to cAMP as well as phorbol esters when transfected in PC12 cells. We have recently shown that pituitary adenylate cyclase activating peptide (PACAP) has neurotrophic properties and activates both adenylylcyclase and the inositol lipid cascade in PC12 cells. Consistent with these actions, we demonstrate that PACAP is an effective activator of luciferase reporter genes whose promoters bear the AP-1 motif, as well as the related DNA element that binds the protein CREB. Both the cAMP and inositol lipid pathways appear to play a role in the activation of these motifs by PACAP. Mutation of the AP-1 motif and its juxtaposition to a heterologous promoter proves that the AP-1 motif is a locus for response to cAMP and PACAP. The luciferase reporter genes bearing the AP-1 motif are not cAMP responsive in HeLa tk- cells, indicating that the mode of second-messenger responsiveness is cell-type specific.  相似文献   

6.
Abstract: In this study, the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic nucleotide accumulation and melatonin (MT) production in dispersed rat pinealocytes were measured. Treatment with PACAP (10−7 M ) increased MT production 2.5-fold. PACAP (10−7 M ) also increased cyclic AMP accumulation four- to fivefold; this effect was potentiated two- to three-fold by α1-adrenergic activation. This potentiation appears to involve protein kinase C (PKC) because α1-adrenergic activation is known to translocate PKC and the PACAP-stimulated cyclic AMP accumulation was potentiated ninefold by a PKC activator, 4β-phorbol 12-myristate 13-acetate (PMA). Phenylephrine and PMA also potentiated the PACAP-stimulated MT accumulation. These results indicate that cyclic AMP is one second messenger of PACAP in the pineal gland and that the effects of PACAP on cyclic AMP and MT production can be potentiated by an α1-adrenergic → PKC mechanism. In addition to these findings, it was observed that PACAP treatment with or without phenylephrine or PMA did not alter cyclic GMP accumulation. This indicates that PACAP is the first ligand identified that increases cyclic AMP accumulation in the pineal gland without increasing cyclic GMP accumulation. That PACAP fails to activate the vasoactive intestinal peptide/cyclic GMP pathway suggests that the vasoactive intestinal peptide receptors present in the pineal may be distinct from the type II PACAP receptors.  相似文献   

7.
8.
9.
10.
The requirements for basal expression of the LH beta-subunit promoter in pituitary gonadotropes are largely unknown. We have used the equine (e) LHbeta subunit promoter as a model to unravel the combinatorial code required for gonadotrope expression. Through the use of 5'-deletion mutagenesis, a region between -185 and -100 of the eLHbeta promoter was shown to play a critical role in maintaining basal promoter activity in alphaT3-1 and LbetaT2 cells. This region encompasses the steroidogenic factor-1 (SF-1) binding site that has been reported to have a functional role in expression of the LHbeta promoter in other species. We have also identified an additional SF-1 site at -55 to -48. Binding of SF-1 to both sites was confirmed by electrophoretic mobility shift assays. Mutations within these sites, either individually or in combination, did not attenuate basal activity of the eLHbeta promoter in alphaT3-1 cells, but did diminish promoter activity in LbetaT2 cells. Interestingly, cotransfection with an expression vector encoding SF-1 induced eLHbeta promoter activity, and this induction was abrogated by mutations within the SF-1 sites in alphaT3-1 cells. Block replacement mutagenesis was performed on the -185/-100 region of the eLHbeta promoter to identify DNA response elements responsible for maintaining basal promoter activity. From this analysis, two regions emerged as being important: a distal 31-bp segment (-181 to -150) and an element located immediately 3' to the distal SF-1 site (-119 to -106). It is hypothesized that these two regions as well as the SF-1 sites represent regulatory elements that contribute to a combinatorial code involved in targeting expression of the eLHbeta promoter to gonadotropes.  相似文献   

11.
12.
13.
14.
15.
The participation of type I GnRH receptor (GnRH-R) on GnRH-II-induced gonadotropin secretion in rat pituitary cells was investigated. Furthermore, we extended the study of GnRH-II action to ovarian cells. The GnRH-II was able to mobilize inositol triphosphate (IP(3)) and to induce LH and FSH release in a dose-dependent manner in pituitary cells and in a GnRH-I-like manner. The GnRH-analog 135-18 (agonist for type II GnRH-R and antagonist for type I GnRH-R) was unable to elicit any cellular response tested in these pituitary cells. The GnRH-II responses were blocked by the type I GnRH-R-antagonists CRX or 135-18, suggesting that these effects were mediated by the type I GnRH-R. In contrast to pituitary cells, GnRH-I, but not GnRH-II, elicited an IP(3) response in superovulated ovarian cells; 135-18 also had no effect. However, GnRH-II as well as GnRH-I presented antiproliferative effects on these cells. Surprisingly, 135-18 had stronger antiproliferative effects than either GnRH peptide. The 135-18 analog, but not GnRH-I or GnRH-II, increased progesterone secretion in superovulated ovarian cells. These results strongly suggest that GnRH-II is able to stimulate rat pituitary cells through the type I GnRH-R, with no evidence for the presence of type II GnRH-R. On the other hand, our results indicate a putative GnRH-R in superovulated ovarian cells with response characteristics that differ from those of the GnRH-R in the pituitary.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号