首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulated exocytosis was the first intracellular membrane fusion step that was suggested to involve both Ca(2+) and calmodulin. In recent years, it has become clear that calmodulin is not an essential Ca(2+) sensor for exocytosis but that it is likely to have a more regulatory role. A requirement for cytosolic Ca(2+) in other vesicle fusion events within cells has become apparent and in certain cases, such as homotypic fusion of early endosomes and yeast vacuoles, calmodulin may be the primary Ca(2+) sensor. A number of distinct targets for calmodulin have been identified including SNARE proteins and subunits of the vacuolar ATPase. The extent to which calmodulin regulates different intracellular fusion events through conserved SNARE-dependent or other mechanisms remains to be resolved.  相似文献   

2.
Synaptotagmin-1 is the calcium sensor for neuronal exocytosis, but the mechanism by which it triggers membrane fusion is not fully understood. Here we show that synaptotagmin accelerates SNARE-dependent fusion of liposomes by interacting with neuronal Q-SNARES in a Ca2+-independent manner. Ca2+-dependent binding of synaptotagmin to its own membrane impedes the activation. Preventing this cis interaction allows Ca2+ to trigger synaptotagmin binding in trans, accelerating fusion. However, when an activated SNARE acceptor complex is used, synaptotagmin has no effect on fusion kinetics, suggesting that synaptotagmin operates upstream of SNARE assembly in this system. Our results resolve major discrepancies concerning the effects of full-length synaptotagmin and its C2AB fragment on liposome fusion and shed new light on the interactions of synaptotagmin with SNAREs and membranes. However, our findings also show that the action of synaptotagmin on the fusion-arrested state of docked vesicles in vivo is not fully reproduced in vitro.  相似文献   

3.
Vascular endothelial cells that are in direct contact with blood flow are exposed to fluid shear stress and regulate vascular homeostasis. Studies report endothelial cells to release ATP in response to shear stress that in turn modulates cellular functions via P2 receptors with P2X4 mediating shear stress-induced calcium signaling and vasodilation. A recent study shows that a loss-of-function polymorphism in the human P2X4 resulting in a Tyr315>Cys variant is associated with increased pulse pressure and impaired endothelial vasodilation. Although the importance of shear stress-induced Krüppel-like factor 2 (KLF2) expression in atheroprotection is well studied, whether ATP regulates KLF2 remains unanswered and is the objective of this study. Using an in vitro model, we show that in human umbilical vein endothelial cells (HUVECs), apyrase decreased shear stress-induced KLF2, KLF4, and NOS3 expression but not that of NFE2L2. Exposure of HUVECs either to shear stress or ATPγS under static conditions increased KLF2 in a P2X4-dependent manner as was evident with both the receptor antagonist and siRNA knockdown. Furthermore, transient transfection of static cultures of human endothelial cells with the Tyr315>Cys mutant P2X4 construct blocked ATP-induced KLF2 expression. Also, P2X4 mediated the shear stress-induced phosphorylation of extracellular regulated kinase-5, a known regulator of KLF2. This study demonstrates a major physiological finding that the shear-induced effects on endothelial KLF2 axis are in part dependent on ATP release and P2X4, a previously unidentified mechanism.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9442-3) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
The type 1 sodium-hydrogen exchanger (NHE-1) is a ubiquitous electroneutral membrane transporter that is activated by hypertonicity in many cells. NHE-1 may be an important pathway for Na(+) entry during volume restoration, yet the molecular mechanisms underlying the osmotic regulation of NHE-1 are poorly understood. In the present study we conducted a screen for important signaling molecules that could be involved in hypertonicity-induced activation of NHE-1 in CHO-K1 cells. Hypertonicity rapidly activated NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry and by measurements of intracellular pH on a FLIPR (fluorometric imaging plate reader). Inhibitors of Ca(2+)/calmodulin (CaM) and Janus kinase 2 (Jak2) attenuated this activation, whereas neither calcium chelation nor inhibitors of protein kinase C, the Ras-ERK1/2 pathway, Src kinase, and Ca(2+)/calmodulin-dependent enzymes had significant effects. Hypertonicity also resulted in the rapid tyrosine phosphorylation of Jak2 and STAT3 (the major substrate of Jak2) and CaM. Phosphorylation of Jak2 and CaM were blocked by AG490, an inhibitor of Jak2. Immunoprecipitation studies showed that hypertonicity stimulates the assembly of a signaling complex that includes CaM, Jak2, and NHE-1. Formation of the complex could be blocked by AG490. Thus, we propose that hypertonicity induces activation of NHE-1 in CHO-K1 cells in large part through the following pathway: hypertonicity --> Jak2 phosphorylation and activation --> tyrosine phosphorylation of CaM --> association of CaM with NHE-1 --> NHE-1 activation.  相似文献   

6.
ATP is an important extracellular signaling molecule and can activate both ionotropic (P2X) and metabotropic purinergic (P2Y) receptors to influence cellular function in many aspects. Gap junction is an intercellular channel and plays a critical role in hearing. Here, we report that stimulation of ATP reduced gap junctional coupling between cochlear supporting cells. This uncoupling effect could be evoked by nanomolar physiological levels of ATP. A P2X receptor agonist benzoylbenzoyl-ATP (BzATP) but not a P2Y receptor agonist UTP stimulated this uncoupling effect. Application of P2X receptor antagonists pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS, 50 μM) or oxidized ATP (oATP, 0.1 mM) eliminated this uncoupling effect. We further found that ATP activated P2X receptors in the cochlear supporting cells allowing Ca2+ influxing, thereby increasing intracellular Ca2+ concentration to mediate gap junctions. These data suggest that ATP can mediate cochlear gap junctions at the physiological level by the activation of P2X receptors rather than P2Y receptors. This P2X receptor-mediated purinergic control on the cochlear gap junctions may play an important role in the regulation of K+-recycling for ionic homeostasis in the cochlea and the reduction of hearing sensitivity under noise stress for protection.  相似文献   

7.
Munc18a scaffolds SNARE assembly to promote membrane fusion   总被引:1,自引:0,他引:1       下载免费PDF全文
Munc18a is an SM protein required for SNARE-mediated fusion. The molecular details of how Munc18a acts to enhance neurosecretion have remained elusive. Here, we use in vitro fusion assays to characterize how specific interactions between Munc18a and the neuronal SNAREs enhance the rate and extent of fusion. We show that Munc18a interacts directly and functionally with the preassembled t-SNARE complex. Analysis of Munc18a point mutations indicates that Munc18a interacts with helix C of the Syntaxin1a NRD in the t-SNARE complex. Replacement of the t-SNARE SNAP25b with yeast Sec9c had little effect, suggesting that Munc18a has minimal contact with SNAP25b within the t-SNARE complex. A chimeric Syntaxin built of the Syntaxin1a NRD and the H3 domain of yeast Sso1p and paired with Sec9c eliminated stimulation of fusion, suggesting that Munc18a/Syntaxin1a H3 domain contacts are important. Additionally, a Syntaxin1A mutant lacking a flexible linker region that allows NRD movement abolished stimulation of fusion. These experiments suggest that Munc18a binds to the Syntaxin1a NRD and H3 domain within the assembled t-SNARE complex, positioning them for productive VAMP2 binding. In this capacity, Munc18a serves as a platform for trans-SNARE complex assembly that facilitates efficient SNARE-mediated membrane fusion.  相似文献   

8.
Nodose ganglion (NG) neurons are visceral primary sensory neurons. The transmission and regulation of visceral sensation is mediated mainly by the P2X purinoceptor (P2X receptor). Although the characteristics of different P2X receptor subunits in the NG have been studied previously, comprehensive analyses have not been performed. In this study, we used immunohistochemistry, immunocytochemistry, and whole cell patch clamp techniques to compare the expression and function of P2X1, P2X2, P2X3, and P2X4 receptor subunits in adult rat NG neurons. Polyclonal antibodies against the four P2X subunits labeled different subpopulations of NG neurons. P2X1 and P2X3 were expressed mainly in small-to-medium sized NG neurons, whereas P2X2 and P2X4 were located mostly in medium- and larger-sized NG neurons. Over 36% of NG neurons were P2X3 positive, which was higher than the other three P2X subunits. In addition, different types of currents were recorded from neurons expressing different P2X subunits. The fast type of ATP current was recorded from neurons containing P2X1–4 subunits, the intermediate type of current was recorded from neurons containing the P2X1, P2X3, and P2X4 subunits, the slow type was recorded from neurons expressing P2X1–3, and/or P2X4 subunits, whereas the very slow type was recorded from neurons containing the P2X2 and P2X3 subunits. These comparative results provide an anatomical verification of the different subunits in NG neurons, and offer direct support for the idea that various functional NG populations have distinct responses to ATP, which might be in part due to the different expression profiles of diverse P2X subunits.  相似文献   

9.
P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current–voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs undergo exocytosis. Finally, the use of P2X4-pHluorin123 showed that the modulator ivermectin did not increase the PM fraction of P2X4 receptors and acted allosterically to potentiate P2X4 receptor responses. Collectively, our data suggest that P2X4-pHluorin123 represents a useful optical probe to quantitatively explore P2X4 receptor distribution, trafficking, and up-regulation.  相似文献   

10.
Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle–regulated accumulation of STIL.  相似文献   

11.
Seven P2X purinergic receptor subunits have been identified: P2X1–P2X7. The overlapping expression of P2X2, P2X4 and P2X6 subunits has been shown in different cell types, and functional analysis of P2X receptors in Leydig cells suggests that the three subunits might interact. Here, His6-tagged P2X2, HA-tagged P2X4 and FLAG-tagged P2X6 subunits were co-expressed in tsA 201 cells. After sequential co-immunoprecipitation using anti-HA and anti-FLAG beads, all three subunits were present, demonstrating their interaction. Atomic force microscopy (AFM) imaging revealed receptors that were specifically decorated by both an anti-His6 antibody and an anti-HA Fab fragment, indicating the presence of a P2X2/4/6 heterotrimer. To our knowledge, this is the first report of a P2X receptor containing three different subunits.  相似文献   

12.
13.
P2X receptors are ligand-gated ion channels activated by extracellular ATP. In expression systems, P2X subunits form homo- and heterotrimeric receptors. Heteromerization is also likely to occur in vivo as (i) most P2X subunits show overlapping distribution in different tissues and (ii) the functional properties of many native P2X receptors differ from those of heterologously expressed homomeric receptors. Here, we used the Xenopus laevis oocyte expression system to test for heteromerization of P2X1 and P2X4 subunits. Upon co-injection, P2X4 subunits were co-purified with hexahistidyl-tagged P2X1 subunits indicating heteromerization. Blue native polyacrylamide gel electrophoresis (BN-PAGE) analysis of these P2X complexes excluded artificial aggregation and confirmed that both subunits were present in trimeric complexes of the same size. Two-electrode voltage-clamp experiments revealed functional P2X receptors with kinetic properties resembling homomeric P2X4 receptors and a pharmacological profile similar to homomeric P2X1 receptors. Thus, application of alpha,beta-methylene ATP evoked a slowly desensitizing current sensitive to the antagonists suramin and 2',3'-O-(2,4,6-trinitrophenyl)-ATP. This study provides for the first time biochemical and functional evidence for the formation of heteromeric P2X(1+4) receptors. These receptors may account for native P2X mediated responses that until now could not be correlated with previously described recombinant P2X receptors.  相似文献   

14.
Prostaglandin E2 (PGE2) is a key mediator of inflammation and contributes to pain hypersensitivity by promoting sensory neurons hyperexcitability. PGE2 synthesis results from activation of a multi‐step enzymatic cascade that includes cyclooxygenases (COXs), the main targets of non‐steroidal anti‐inflammatory drugs (NSAIDs). Although NSAIDs are widely prescribed to reduce inflammatory symptoms such as swelling and pain, associated harmful side effects restrict their long‐term use. Therefore, finding new drugs that limit PG production represents an important therapeutic issue. In response to peripheral inflammatory challenges, mice lacking the ATP‐gated P2X4 channel (P2X4R) do not develop pain hypersensitivity and show a complete absence of inflammatory PGE2 in tissue exudates. In resting conditions, tissue‐resident macrophages constitutively express P2X4R. Stimulating P2X4R in macrophages triggers calcium influx and p38 MAPK phosphorylation, resulting in cytosolic PLA2 (cPLA2) activation and COX‐dependent release of PGE2. In naive animals, pain hypersensitivity was elicited by transfer into the paw of ATP‐primed macrophages from wild type, but not P2X4R‐deficient mice. Thus, P2X4Rs are specifically involved in inflammatory‐mediated PGE2 production and might therefore represent useful therapeutic targets.  相似文献   

15.
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.  相似文献   

16.
Activation of the P2X7 receptor of macrophages plays an important role in inflammation. We recently reported that co-expression of P2X4 receptor with P2X7 receptor facilitates P2X7 receptor-mediated cell death via Ca(2+) influx. However, it remained unclear whether P2X4 receptor is involved in P2X7 receptor-mediated inflammatory responses, such as cytokine production. Here, we present evidence that P2X4 receptor modulates P2X7 receptor-dependent inflammatory functions. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced high mobility group box 1 (HMGB1) release and IL-1β production via activation of P2X7 receptor. Knockdown of P2X4 receptor or removal of extracellular Ca(2+) suppressed ATP-induced release of both HMGB1 and IL-1β. On the other hand, knockdown of P2X4 receptor or removal of extracellular Ca(2+) enhanced P2X7-dependent LC3-II expression (an index of autophagy), suggesting that P2X4 receptor suppresses P2X7-mediated autophagy. Since LC3-II expression was inhibited by pretreatment with antioxidant and NADPH oxidase inhibitor, we examined P2X7-mediated production of reactive oxygen species (ROS). We found that activation of P2X7 receptor-mediated production of ROS was significantly facilitated in P2X4-knockdown cells, suggesting that co-expression of P2X4 receptor with P2X7 receptor may suppress anti-inflammatory function-related autophagy via suppression of ROS production. We conclude that co-expression of P2X4 receptor with P2X7 receptor enhances P2X7-mediated inflammation through both facilitation of release of cytokines and suppression of autophagy.  相似文献   

17.
ATP, acting via P2 purinergic receptors, is a known mediator of inflammatory and neuropathic pain. There is increasing evidence that the ATP-gated P2X4 receptor (P2X4R) subtype is a locus through which activity of spinal microglia and peripheral macrophages instigate pain hypersensitivity caused by inflammation or by injury to a peripheral nerve. The present article highlights the recent advances in our understanding of microglia-neuron interactions in neuropathic pain by focusing on the signaling and regulation of the P2X4R. We will also develop a framework for understanding converging lines of evidence for involvement of P2X4Rs expressed on macrophages in peripheral inflammatory pain.  相似文献   

18.
19.
Gangliosides mediate neuronal differentiation and maturation and are indispensable for the maintenance of brain function and survival. As part of our ongoing efforts to understand signaling pathways related to ganglioside function, we recently demonstrated that neuronal cells react to exogenous gangliosides GT1b and GD1b. Both of these gangliosides are enriched in the synapse-forming area of the brain and induce Ca(2+) release from intracellular stores, activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and activation of cdc42 to promote reorganization of cytoskeletal actin and dendritic differentiation. Here, we show that bradykinin B2 receptors transduce these reactions as a mediator for ganglioside glycan signals. The B2 antagonist Hoe140 inhibited ganglioside-induced CaMKII activation, actin reorganization and early development of axon- and dendrite-like processes of primary cultured hippocampal neurons. Furthermore, we confirmed by yeast reporter assay that major b-series gangliosides, GT1b, GD1b and GD3, stimulated B2 bradykinin receptors. We hypothesize that this B2 receptor-mediated ganglioside signal transduction pathway is one mechanism that modulates neuronal differentiation and maturation.  相似文献   

20.
P2X4 receptors (P2X4Rs), a subtype of the purinergic P2X family, play important roles in regulating neuronal and glial functions in the nervous system. We have previously shown that the expression of P2X4Rs is upregulated in activated microglia after peripheral nerve injury and that activation of the receptors by extracellular ATP is crucial for maintaining nerve injury-induced pain hypersensitivity. However, the regulation of P2X4R expression on the cell surface of microglia is poorly understood. Here, we identify the CC chemokine receptor CCR2 as a regulator of P2X4R trafficking to the cell surface of microglia. In a quantitative cell surface biotinylation assay, we found that applying CCL2 or CCL12, endogenous ligands for CCR2, to primary cultured microglial cells, increased the levels of P2X4R protein on the cell surface without changing total cellular expression. This effect of CCL2 was prevented by an antagonist of CCR2. Time-lapse imaging of green fluorescent protein (GFP)-tagged P2X4R in living microglial cells showed that CCL2 stimulation increased the movement of P2X4R-GFP particles. The subcellular localization of P2X4R immunofluorescence was restricted to lysosomes around the perinuclear region. Notably, CCL2 changed the distribution of lysosomes with P2X4R immunofluorescence within microglial cells and induced release of the lysosomal enzyme β-hexosaminidase, indicating lysosomal exocytosis. Moreover, CCL2-stimulated microglia enhanced Akt phosphorylation by ATP applied extracellularly, a P2X4R-mediated response. These results indicate that CCL2 promotes expression of P2X4R protein on the cell surface of microglia through exocytosis of P2X4R-containing lysosomes, which may be a possible mechanism for pain hypersensitivity after nerve injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号