共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Synaptic vesicles can be retrieved rapidly or slowly, but the molecular basis of these kinetic differences has not been defined. We now show that substantially different sets of molecules mediate fast and slow endocytosis in the synaptic terminal of retinal bipolar cells. Capacitance measurements of membrane retrieval were made in terminals in which peptides and protein domains were introduced to disrupt known interactions of clathrin, the AP2 adaptor complex, and amphiphysin. All these manipulations caused a selective inhibition of the slow phase of membrane retrieval (time constant approximately 10 s), leaving the fast phase (approximately 1 s) intact. Slow endocytosis after strong stimulation was therefore dependent on the formation of clathrin-coated membrane. Fast endocytosis occurring after weaker stimuli retrieves vesicle membrane in a clathrin-independent manner. All compensatory endocytosis required GTP hydrolysis, but only a subset of released vesicles were primed for fast, clathrin-independent endocytosis. 相似文献
3.
4.
A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells 总被引:14,自引:0,他引:14
Perhaps synaptic vesicles can recycle so rapidly because they avoid complete exocytosis, and release transmitter through a fusion pore that opens transiently. This view emerges from imaging whole terminals where the fluorescent lipid FM1-43 seems unable to leave vesicles during transmitter release. Here we imaged single, FM1-43-stained synaptic vesicles by evanescent field fluorescence microscopy, and tracked the escape of dye from single vesicles by watching the increase in fluorescence after exocytosis. Dye left rapidly and completely during most or all exocytic events. We conclude that vesicles at this terminal allow lipid exchange soon after exocytosis, and lose their dye even if they connected with the plasma membrane only briefly. At the level of single vesicles, therefore, observations with FM1-43 provide no evidence that exocytosis of synaptic vesicles is incomplete. 相似文献
5.
BACKGROUND: During Drosophila oogenesis a membranous organelle called the fusome has a key function in the establishment of oocyte fate and polarity, ultimately leading to the establishment of the major body axes of the animal. The fusome is necessary for the microtubule-driven restriction of markers of oocyte fate to the oocyte, but the mechanism by which the fusome organizes the microtubules is not known.RESULTS: We have identified the spectraplakin Short stop (Shot) as a new component of the fusome. Spectraplakins are giant cytoskeletal linker proteins, with multiple isoforms produced from each gene. Shot is the sole spectraplakin in Drosophila. The phenotype caused by the absence of Shot is not similar to that of other components of the fusome but instead is similar to the absence of the downstream components that interact with microtubules: the dynein/dynactin-complex-associated proteins Egalitarian and BicaudalD. Shot is required for the association of microtubules with the fusome and the subsequent specification of the oocyte in 16-cell cysts. Shot is also required for the concentration of centrosomes into the oocyte, a process thought to be independent of microtubules because it still occurs in the presence of microtubule depolymerizing drugs. This suggests that Shot may protect some microtubules from depolymerization and that these microtubules are sufficient for this process.CONCLUSIONS: Shot provides the missing link between the fusome and microtubules within meiotic cysts, which is essential for the establishment of the oocyte. Shot associates with the fusome and is required for microtubule organization. We suggest that it does this directly, via its microtubule binding GAS2 domain. 相似文献
6.
There have been numerous studies on the activity and localization of aspartate aminotransferase (AAT) and glutamate dehydrogenase (GDH) in brain tissue. However, there is still a controversy as to the specific roles and relative importance of these enzymes in glutamate and glutamine metabolism in astrocytes and neurons or synaptic terminals. There are many reports documenting GDH activity in synaptic terminals, yet the misconception that it is a glial enzyme persists. Furthermore, there is evidence that this tightly regulated enzyme may have an increased role in synaptic metabolism in adverse conditions such as low glucose and hyperammonemia that could compromise synaptic function. In the present study, we report high activity of both AAT and GDH in mitochondrial subfractions from cortical synaptic terminals. The relative amount of GDH/AAT activity was higher in SM2 mitochondria, compared to SM1 mitochondria. Such a differential distribution of enzymes can contribute significantly to the compartmentation of metabolism. There is evidence that the metabolic capabilities of the SM1 and SM2 subfractions of synaptic mitochondria are compatible with the compartments A and B of neuronal metabolism proposed by Waagepetersen et al. (1998b. Dev. Neurosci. 20, 310-320). 相似文献
7.
In 23 species of vertebrates the dimensions of erythrocytes and the number of their marginal band microtubules were examined. A positive correlation was found between the size of erythrocytes and the number of microtubules. The absence of microtubules in diskoid erythrocytes of mammals-Camelidae-is discussed. 相似文献
8.
In order to test whether the alterations in photoreceptor synaptic terminal size and shape reported in lower vertebrates occur in a mammalian visual system, adult and fetal guinea pig retinas were exposed to an LD 12:12 lighting cycle, as well as to long-term light (LL) and long-term dark (DD) regimes. Representative random samples from all retinal quadrants, obtained at various times during these lighting regimes, were processed for electron microscopy. The synaptic terminals of all three photoreceptor cell types in this retina (alpha and paranuclear rods, and cones) were analyzed with computer-assisted morphometrics for changes in their area, perimeter, synaptic vesicle density, and the degree of plasmalemmal infolding. The data showed all three types of adult receptor terminals to have increased area and vesicle density, as well as decreased membrane infolding, during the light period, while both types of rods showed increased perimeter measurements in the dark. Results from adults maintained under extended lighting conditions (LL and DD) showed no difference when compared with sample times during a typical LD 12:12 lighting regimen where clear statistical differences existed. Data from fetal retinas showed no significant sustainable pattern in any of the measured variables. These quantitative findings have led to the conclusion that while alterations in perimeter measurements may be explained by using the vesicle recycling hypothesis, observed changes in terminal size and shape may be controlled by a light-initiated or light-enhanced mechanism and effected through an annular configuration of cross-striated fibrils found within these photoreceptor synaptic terminals. 相似文献
9.
Endogenous calcium buffers regulate fast exocytosis in the synaptic terminal of retinal bipolar cells. 总被引:4,自引:0,他引:4
Calcium-triggered exocytosis at the synapse is suppressed by addition of calcium chelators, but the effects of endogenous Ca(2+) buffers have not been tested. We find that 80% of Ca(2+) binding sites in the synaptic terminal of retinal bipolar cells were associated with mobile molecules that suppressed activation of Ca(2+)-sensitive K(+) channels with an efficiency equivalent to approximately 1.2 mM BAPTA. Removing these buffers caused a 30-fold increase in the number of vesicles released by Ca(2+) tail currents lasting approximately 0.5 ms and a 2-fold increase in the rapidly releasable pool of vesicles (RRP). The effects of BAPTA and EGTA indicate that vesicles comprising the RRP were docked at variable distances from Ca(2+) channels. We propose that endogenous Ca(2+) buffers regulate the size of the RRP by suppressing the release of vesicles toward the periphery of the active zone. 相似文献
10.
Summary A study has been made of the microtubules of the preprophase band and the mitotic spindle in the meristematic cells of the root of Phleum pratense. The preprophase band in these cells is placed symmetrically round the nucleus although a great many of the cells divide asymmetrically. It is suggested that the function of the preprophase band is to orient the nucleus prior to mitosis. The function and formation of the tubules which are found in close association with profiles of smooth endoplasmic reticulum is discussed. 相似文献
11.
O Behnke 《Journal of ultrastructure research》1965,13(5):469-477
12.
Summary Synaptic terminals of fast (FCE) and slow (SCE) excitatory neurons were physiologically identified on separate fibres of one muscle, the closer muscle in lobster claws. The innervation by these identified fibers was demonstrated over long distances (7–21 m) by examining serial thin sections at periodic intervals. The ultrastructure of each type of innervation was consistent both qualitatively and quantitatively in two separate samples. The FCE innervation is relatively simple in having consistently small-diameter terminals each forming a single long synapse, with few synaptic vesicles, and little if any postsynaptic apparatus. The SCE innervation is more complex in having larger-diameter but more variable terminals forming several short synapses, with many synaptic vesicles and an extensive postsynaptic apparatus. These differences in the size of the synapses and the number of synaptic vesicles parallel differences in transmitter release and fatigue sensitivity characteristic of the two types of innervation. The degree of elaboration of the postsynaptic apparatus may reflect differences in the amount of transmitter taken up after release. Our data reveal for the first time in a single muscle differences between FCE and SCE innervation previously reported in different muscles and in different species.Supported by grants from NIH (NINCDS) to A.G. Humes and the late Fred Lang and from NSERC and Muscular Dystrophy Assoc. of Canada to C.K. GovindWe thank Lena Hill for her technical expertise and critical evaluation of the study, and Dr. A.G. Humes for providing research facilities 相似文献
13.
A characterization is reported of the major cytoskeletal protein, called IEF (isoelectric focusing)-51K, of marginal band microtubule coils from human blood platelets (Kenney, D. M. and Linck, R. W. (1985) J. Cell Sci. 78, 1-22). IEF-51K is a unique biochemical species which is distinguishable from platelet and mammalian neuronal alpha-tubulin and beta-tubulin by 1) its faster mobility on discontinuous sodium dodecyl sulfate electrophoresis corresponding to an apparent Mr 51,000; 2) its more alkaline relative isoelectric point at pH 5.7 compared with that of alpha- and beta-tubulin at pH 5.3 and 5.5, respectively; 3) lack of coincidence in peptide maps prepared with chymotrypsin or Staphylococcus aureus V8 protease; and 4) lack of immunochemical cross-reactivity of polyclonal anti-IEF-51K with alpha- and beta-tubulin and of monoclonal anti-alpha-tubulin and anti-beta-tubulin with IEF-51K. In contrast to its chemical uniqueness, IEF-51K is tubulin-like in some of its properties. IEF-51K is localized in the marginal band of intact platelets by immunofluorescence; it undergoes cycles of microtubule disassembly/reassembly both in vitro and in vivo. Furthermore, IEF-51K was not extracted from isolated Taxol-stabilized marginal band microtubules by elevated NaCl concentrations (to 0.45 M), conditions that do not disrupt the polymeric structure of alpha- and beta-tubulin. These results indicate that IEF-51K together with alpha-tubulin and beta-tubulin are the major structural polypeptides of platelet marginal band microtubules. The unusual subunit composition of the platelet marginal band microtubule may be related to specialization(s) of microtubule structure and function in the marginal band coil of platelets. 相似文献
14.
McKenna MC Stevenson JH Huang X Tildon JT Zielke CL Hopkins IB 《Neurochemistry international》2000,36(4-5):451-459
Most of the malic enzyme activity in the brain is found in the mitochondria. This isozyme may have a key role in the pyruvate recycling pathway which utilizes dicarboxylic acids and substrates such as glutamine to provide pyruvate to maintain TCA cycle activity when glucose and lactate are low. In the present study we determined the activity and kinetics of malic enzyme in two subfractions of mitochondria isolated from cortical synaptic terminals, as well as the activity and kinetics in mitochondria isolated from primary cultures of cortical neurons and cerebellar granule cells. The synaptic mitochondrial fractions had very high mitochondrial malic enzyme (mME) activity with a Km and a Vmax of 0.37 mM and 32.6 nmol/min/mg protein and 0.29 mM and 22.4 nmol/min mg protein, for the SM2 and SM1 fractions, respectively. The Km and Vmax for malic enzyme activity in mitochondria isolated from cortical neurons was 0.10 mM and 1.4 nmol/min/mg protein and from cerebellar granule cells was 0.16 mM and 5.2 nmol/min/mg protein. These data show that mME activity is highly enriched in cortical synaptic mitochondria compared to mitochondria from cultured cortical neurons. The activity of mME in cerebellar granule cells is of the same magnitude as astrocyte mitochondria. The extremely high activity of mME in synaptic mitochondria is consistent with a role for mME in the pyruvate recycling pathway, and a function in maintaining the intramitochondrial reduced glutathione in synaptic terminals. 相似文献
15.
An association between microtubules and aligned mitochondria in Nephrotoma spermatocytes 总被引:3,自引:0,他引:3
J R La Fountain 《Experimental cell research》1972,71(2):325-328
16.
GABAergic inhibition in the central nervous system (CNS) can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABA(A) receptors (GABA(A)Rs) respectively. Retinal bipolar cells (BCs) exhibit a tonic current mediated by GABA(C)Rs in their axon terminal, in addition to synaptic GABA(A)R and GABA(C)R currents, which strongly regulate BC output. The tonic GABA(C)R current in BC terminals (BCTs) is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABA(C)Rs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABA(C)R current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABA(C)Rs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABA(C)R ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABA(C)Rs are thought to be ρ1-ρ2 heteromers. To investigate whether GABA(C)Rs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABA(A)Rs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABA(C)R currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina. 相似文献
17.
18.
Readily releasable and reserve pools of synaptic vesicles play different roles in neurotransmission, and it is important to understand their recycling and interchange in mature central synapses. Using adult rat cerebrocortical synaptosomes, we have shown that 100 mosm hypertonic sucrose caused complete exocytosis of only the readily releasable pool (RRP) of synaptic vesicles containing glutamate or gamma-aminobutyric acid. Repetitive hypertonic stimulations revealed that this pool recycled (and reloaded the neurotransmitter from the cytosol) fully in <30 s and did so independently of the reserve pool. Multiple rounds of exocytosis could occur in the constant absence of extracellular Ca(2+). However, although each vesicle cycle includes a Ca(2+)-independent exocytotic step, some other stage(s) critically require an elevation of cytosolic [Ca(2+)], and this is supplied by intracellular stores. Repetitive recycling also requires energy, but not the activity of phosphatidylinositol 4-kinase, which maintains the normal level of phosphoinositides. By varying the length of hypertonic stimulations, we found that approximately 70% of the RRP vesicles fused completely with the plasmalemma during exocytosis and could then enter silent pools, probably outside active zones. The rest of the RRP vesicles underwent very fast local recycling (possibly by kiss-and-run) and did not leave active zones. Forcing the fully fused RRP vesicles into the silent pool enabled us to measure the transfer of reserve vesicles to the RRP and to show that this process requires intact phosphatidylinositol 4-kinase and actin microfilaments. Our findings also demonstrate that respective vesicle pools have similar characteristics and requirements in excitatory and inhibitory nerve terminals. 相似文献
19.
A. L. Zefirov A. V. Zakharov R. D. Mukhamedyanov A. M. Petrov 《Journal of Evolutionary Biochemistry and Physiology》2008,44(6):712-723
Using electrophysiology and fluorescence microscopy with dye FM 1-43, a comparative study of peculiarities of neurotransmitter secretion, synaptic vesicle exo-endocytosis and recycling has been carried out in nerve terminals (NT) of the skin-sternal muscle of the frog Rana ridibunda and of the white mouse diaphragm muscle during a long-term high-frequency stimulation (20 imp/s). The obtained data have allowed identifying three synaptic vesicle pools and two recycling ways in the motor NT. In the frog NT, the long-term high-frequency stimulation induced consecutive expenditure of the pool ready to release, the mobilizational, and reserve vesicle pools. The exocytosis rate exceeded markedly the endocytosis rate; the slow synaptic vesicle recycling with replenishment of the reserve pool was predominant. In the mouse NT, only the vesicles of the ready to release and the mobilizational pools, which are replenished predominantly by fast recycling, were exocytosed. The exo- and endocytosis occurred practically in parallel, while vesicles of the reserve pool did not participate in the neurotransmitter secretion. It is suggested that evolution of the motor NT from the poikilothermal to homoiothermal animals went by the way of a decrease of the vesicle pool size, the more economic expenditure and the more effective reuse of synaptic vesicles owing to the high rates of endocytosis and recycling. These peculiarities can provide in NT of homoiothermal animals a long maintenance of neurotransmitter secretion at the steady and sufficiently high level to preserve reliability of synaptic transmission in the process of the high-frequency activity. 相似文献
20.
J S Berg 《Journal of insect physiology》1975,21(2):455-461
Phosphodiesterase activity has been found associated with axonal microtubules in the sensory nerves of the blowfly, Phormia regina, taste receptors. A specific reaction product for this enzyme was also observed within axonal mitochondria, but not within the mitochondria of the surrounding glial cells. A possible explanation for these data is discussed. 相似文献