首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BLM and WRN, the products of the Bloom’s and Werner’s syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3′→5′ polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded ‘bubble’, as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each ‘arm’ of the 4-way junction is blunt-ended. Surprisingly, a 3′-tailed duplex, a standard substrate for 3′→5′ helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3′-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom’s or Werner’s syndrome.  相似文献   

2.
The significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures. However, RecQ is absent in M. tuberculosis, and the helicase that participates in G4 resolution in M. tuberculosis is obscure. Here, we show that M. tuberculosis DinG (MtDinG) exhibits high affinity for ssDNA and ssDNA translocation with a 5′ → 3′ polarity. Interestingly, MtDinG unwinds overhangs, flap structures, and forked duplexes but fails to unwind linear duplex DNA. Our data with DNase I footprinting provide mechanistic insights and suggest that MtDinG is a 5′ → 3′ polarity helicase. Notably, in contrast to E. coli DinG, MtDinG catalyzes unwinding of replication fork and Holliday junction structures. Strikingly, we find that MtDinG resolves intermolecular G4 structures. These data suggest that MtDinG is a multifunctional structure-specific helicase that unwinds model structures of DNA replication, repair, and recombination as well as G4 structures. We finally demonstrate that promoter sequences of M. tuberculosis PE_PGRS2, mce1R, and moeB1 genes contain G4 structures, implying that G4 structures may regulate gene expression in M. tuberculosis. We discuss these data and implicate targeting G4 structures and DinG helicase in M. tuberculosis could be a novel therapeutic strategy for culminating the infection with this pathogen.  相似文献   

3.
Substrate-specific inhibition of RecQ helicase   总被引:9,自引:3,他引:6       下载免费PDF全文
The RecQ helicases constitute a small but highly conserved helicase family. Proteins in this family are of particular interest because they are critical to maintenance of genomic stability in prokaryotes and eukaryotes. Eukaryotic RecQ helicase family members have been shown to unwind not only DNA duplexes but also DNAs with alternative structures, including structures stabilized by G quartets (G4 DNAs). We report that Escherichia coli RecQ can also unwind G4 DNAs, and that unwinding requires ATP and divalent cation. RecQ helicase is comparably active on duplex and G4 DNA substrates, as measured by direct comparison of protein activity and by competition assays. The porphyrin derivative, N-methyl mesoporphyrin IX (NMM), is a highly specific inhibitor of RecQ unwinding activity on G4 DNA but not duplex DNA: the inhibition constant (Ki) for NMM inhibition of G4 DNA unwinding is 1.7 µM, approximately two orders of magnitude below the Ki for inhibition of duplex DNA unwinding (>100 µM). NMM may therefore prove to be a valuable compound for substrate-specific inhibition of other RecQ family helicases in vitro and in vivo.  相似文献   

4.
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. Several of the co-opted host factors bind to the viral RNA, which plays multiple roles, including mRNA function, as an assembly platform for the viral replicase (VRC), template for RNA synthesis, and encapsidation during infection. It is likely that remodeling of the viral RNAs and RNA-protein complexes during the switch from one step to another requires RNA helicases. In this paper, we have discovered a second group of cellular RNA helicases, including the eIF4AIII-like yeast Fal1p and the DDX5-like Dbp3p and the orthologous plant AtRH2 and AtRH5 DEAD box helicases, which are co-opted by tombusviruses. Unlike the previously characterized DDX3-like AtRH20/Ded1p helicases that bind to the 3′ terminal promoter region in the viral minus-strand (−)RNA, the other class of eIF4AIII-like RNA helicases bind to a different cis-acting element, namely the 5′ proximal RIII(−) replication enhancer (REN) element in the TBSV (−)RNA. We show that the binding of AtRH2 and AtRH5 helicases to the TBSV (−)RNA could unwind the dsRNA structure within the RIII(−) REN. This unique characteristic allows the eIF4AIII-like helicases to perform novel pro-viral functions involving the RIII(−) REN in stimulation of plus-strand (+)RNA synthesis. We also show that AtRH2 and AtRH5 helicases are components of the tombusvirus VRCs based on co-purification experiments. We propose that eIF4AIII-like helicases destabilize dsRNA replication intermediate within the RIII(−) REN that promotes bringing the 5′ and 3′ terminal (−)RNA sequences in close vicinity via long-range RNA-RNA base pairing. This newly formed RNA structure promoted by eIF4AIII helicase together with AtRH20 helicase might facilitate the recycling of the viral replicases for multiple rounds of (+)-strand synthesis, thus resulting in asymmetrical viral replication.  相似文献   

5.
6.
Replicative helicases are hexameric enzymes that unwind DNA during chromosomal replication. They use energy from nucleoside triphosphate hydrolysis to translocate along one strand of the duplex DNA and displace the complementary strand. Here, the ability of a replicative helicase from each of the three domains, bacteria, archaea, and eukarya, to unwind RNA-containing substrate was determined. It is shown that all three helicases can unwind DNA-RNA hybrids while translocating along the single-stranded DNA. No unwinding could be observed when the helicases were provided with a single-stranded RNA overhang. Using DNA, RNA, and DNA-RNA chimeric oligonucleotides it was found that whereas the enzymes can bind both DNA and RNA, they could translocate only along DNA and only DNA stimulates the ATPase activity of the enzymes. Recent observations suggest that helicases may interact with enzymes participating in RNA metabolism and that RNA-DNA hybrids may be present on the chromosomes. Thus, the results presented here may suggest a new role for the replicative helicases during chromosomal replication or in other cellular processes.  相似文献   

7.
Recently, we cloned two highly related human genes, hChlR1 (DDX11) and hChlR2 (DDX12), which appear to be homologs of the Saccharomyces cerevisiae CHL1 gene. Nucleotide sequence analysis suggests that these genes encode new members of the DEAH family of DNA helicases. While the enzymatic activity of CHL1 has not been characterized, the protein is required for the maintenance of high fidelity chromosome segregation in yeast. Here we report that the hChlR1 protein is a novel human DNA helicase. We have expressed and purified hChlR1 using a baculovirus system and analyzed its enzymatic activity. The recombinant hChlR1 protein possesses both ATPase and DNA helicase activities that are strictly dependent on DNA, divalent cations and ATP. These activities are abolished by a single amino acid substitution in the ATP-binding domain. The hChlR1 protein can unwind both DNA/DNA and RNA/DNA substrates. It has a preference for movement in the 5′→3′ direction on short single-stranded DNA templates. However, unlike other DNA helicases, the hChlR1 DNA helicase can translocate along single-stranded DNA in both directions when substrates have a very long single-stranded DNA region. The enzymatic activities of hChlR1 suggest that DNA helicases are required for maintaining the fidelity of chromosome segregation.  相似文献   

8.
9.
Superfamily I helicases are nonhexameric helicases responsible for the unwinding of nucleic acids. However, whether they unwind DNA in the form of monomers or oligomers remains a controversy. In this study, we addressed this question using direct single-molecule fluorescence visualization of Escherichia coli UvrD, a superfamily I DNA helicase. We performed a photobleaching-step analysis of dye-labeled helicases and determined that the helicase is bound to 18-basepair (bp) double-stranded DNA (dsDNA) with a 3′ single-stranded DNA (ssDNA) tail (12, 20, or 40 nt) in a dimeric or trimeric form in the absence of ATP. We also discovered through simultaneous visualization of association/dissociation of the helicase with/from DNA and the DNA unwinding dynamics of the helicase in the presence of ATP that these dimeric and trimeric forms are responsible for the unwinding of DNA. We can therefore propose a new kinetic scheme for the helicase-DNA interaction in which not only a dimeric helicase but also a trimeric helicase can unwind DNA. This is, to our knowledge, the first direct single-molecule nonhexameric helicase quantification study, and it strongly supports a model in which an oligomer is the active form of the helicase, which carries important implications for the DNA unwinding mechanism of all superfamily I helicases.  相似文献   

10.
The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3′ to 5′ direction along the bound strand in an ATP- and Mg2+-dependent fashion. The enzyme is not processive and can also unwind partial RNA–RNA duplexes such as HDH IV and HDH VIII. The Mr determined by SDSPAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the ‘FUSE’ DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.  相似文献   

11.
ScPif1 DNA helicase is the prototypical member of a 5′-to-3′ helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5′-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA–RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.  相似文献   

12.
Replication is a crucial cellular process. Replicative helicases unwind DNA providing the template strand to the polymerase and promoting replication fork progression. Helicases are multi-domain proteins which use an ATPase domain to couple ATP hydrolysis with translocation, however the role that the other domains might have during translocation remains elusive. Here, we studied the unexplored self-loading helicases called Reps, present in Staphylococcus aureus pathogenicity islands (SaPIs). Our cryoEM structures of the PriRep5 from SaPI5 (3.3 Å), the Rep1 from SaPI1 (3.9 Å) and Rep1–DNA complex (3.1Å) showed that in both Reps, the C-terminal domain (CTD) undergoes two distinct movements respect the ATPase domain. We experimentally demonstrate both in vitro and in vivo that SaPI-encoded Reps need key amino acids involved in the staircase mechanism of translocation. Additionally, we demonstrate that the CTD′s presence is necessary for the maintenance of full ATPase and helicase activities. We speculate that this high interdomain flexibility couples Rep′s activities as initiators and as helicases.  相似文献   

13.
To understand the specific genetic instabilities associated with deficiencies in RecQ family helicases, we have studied the substrate preferences of two closely related members of this family, human BLM and Saccharomyces cerevisiae Sgs1p. Here we show that both BLM and Sgs1p preferentially unwind G4 DNA relative to Holliday junction substrates, and that substrate preference reflects binding affinity and maps to the conserved central helicase domain. We identify the porphyrin N-methyl mesoporphyrin IX (NMM) as a specific inhibitor of G4 DNA unwinding, and show that in the presence of NMM the helicase becomes trapped on the NMM–G4 DNA complex, consuming ATP but unable to unwind or dissociate. These results suggest that BLM and Sgs1p function proactively in replication to remove G4 DNA structures which would otherwise present obstacles to fork progression, rather than by promoting recombination to restart a fork that has stalled.  相似文献   

14.
Escherichia coli DNA helicases: mechanisms of DNA unwinding   总被引:12,自引:0,他引:12  
DNA helicases are ubiquitous enzymes that catalyse the unwinding of duplex DNA during replication, recombination and repair. These enzymes have been studied extensively; however, the specific details of how any helicase unwinds duplex DNA are unknown. Although it is clear that not all helicases unwind duplex DNA in an identical way, many helicases possess similar properties, which are thus likely to be of general importance to their mechanism of action. For example, since helicases appear generally to be oligomeric enzymes, the hypothesis is presented in this review that the functionally active forms of DNA helicases are oligomeric. The oligomeric nature of helicases provides them with multiple DNA-binding sites, allowing the transient formation of ternary structures, such that at an unwinding fork, the helicase can bind either single-stranded and duplex DNA simultaneously or two strands of single-stranded DNA. Modulation of the relative affinities of these binding sites for single-stranded versus duplex DNA through ATP binding and hydrolysis would then provide the basis for a cycling mechanism for processive unwinding of DNA by helicases. The properties of the Escherichia coli DNA helicases are reviewed and possible mechanisms by which helicases might unwind duplex DNA are discussed in view of their oligomeric structures, with emphasis on the E. coli Rep, RecBCD and phage T7 gene 4 helicases.  相似文献   

15.
Bloom syndrome and Werner syndrome are genome instability disorders, which result from mutations in two different genes encoding helicases. Both enzymes are members of the RecQ family of helicases, have a 3' --> 5' polarity, and require a 3' single strand tail. In addition to their activity in unwinding duplex substrates, recent studies show that the two enzymes are able to unwind G2 and G4 tetraplexes, prompting speculation that failure to resolve these structures in Bloom syndrome and Werner syndrome cells may contribute to genome instability. The triple helix is another alternate DNA structure that can be formed by sequences that are widely distributed throughout the human genome. Here we show that purified Bloom and Werner helicases can unwind a DNA triple helix. The reactions are dependent on nucleoside triphosphate hydrolysis and require a free 3' tail attached to the third strand. The two enzymes unwound triplexes without requirement for a duplex extension that would form a fork at the junction of the tail and the triplex. In contrast, a duplex formed by the third strand and a complement to the triplex region was a poor substrate for both enzymes. However, the same duplex was readily unwound when a noncomplementary 5' tail was added to form a forked structure. It seems likely that structural features of the triplex mimic those of a fork and thus support efficient unwinding by the two helicases.  相似文献   

16.
A conserved G4 DNA binding domain in RecQ family helicases   总被引:1,自引:0,他引:1  
RecQ family helicases play important roles at G-rich domains of the genome, including the telomeres, rDNA, and immunoglobulin switch regions. This appears to reflect the unusual ability of enzymes in this family to unwind G4 DNA. How RecQ family helicases recognize this substrate has not been established. Here, we show that G4 DNA is a preferred target for BLM helicase within the context of long DNA molecules. We identify the RQC domain, found only in RecQ family enzymes, as an independent, high affinity and conserved G4 DNA binding domain; and show that binding to Holliday junctions involves both the RQC and the HRDC domains. These results provide mechanistic understanding of differences and redundancies of function and activities among RecQ family helicases, and of how deficiencies in human members of this family may contribute to genomic instability and disease.  相似文献   

17.
DNA helicases are responsible for unwinding the duplex DNA, a key step in many biological processes. UvrD is a DNA helicase involved in several DNA repair pathways. We report here crystal structures of Deinococcus radiodurans UvrD (drUvrD) in complex with DNA in different nucleotide-free and bound states. These structures provide us with three distinct snapshots of drUvrD in action and for the first time trap a DNA helicase undergoing a large-scale spiral movement around duplexed DNA. Our structural data also improve our understanding of the molecular mechanisms that regulate DNA unwinding by Superfamily 1A (SF1A) helicases. Our biochemical data reveal that drUvrD is a DNA-stimulated ATPase, can translocate along ssDNA in the 3′-5′ direction and shows ATP-dependent 3′-5′, and surprisingly also, 5′-3′ helicase activity. Interestingly, we find that these translocase and helicase activities of drUvrD are modulated by the ssDNA binding protein. Analysis of drUvrD mutants indicate that the conserved β-hairpin structure of drUvrD that functions as a separation pin is critical for both drUvrD’s 3′-5′ and 5′-3′ helicase activities, whereas the GIG motif of drUvrD involved in binding to the DNA duplex is essential for the 5′-3′ helicase activity only. These special features of drUvrD may reflect its involvement in a wide range of DNA repair processes in vivo.  相似文献   

18.
Replicative DNA helicases are ring-shaped hexamers that play an essential role in chromosomal DNA replication. They unwind the two strands of the duplex DNA and provide the single-stranded (ss) DNA substrate for the polymerase. The minichromosome maintenance (MCM) proteins are thought to function as the replicative helicases in eukarya and archaea. The proteins of only a few archaeal organisms have been studied and revealed that although all have similar amino acid sequences and overall structures they differ in their biochemical properties. In this report the biochemical properties of the MCM protein from the archaeon Thermoplasma acidophilum is described. The enzyme has weak helicase activity on a substrate containing only a 3′-ssDNA overhang region and the protein requires a forked DNA structure for efficient helicase activity. It was also found that the helicase activity is stimulated by one of the two T.acidophilum Cdc6 homologues. This is an interesting observation as it is in sharp contrast to observations made with MCM and Cdc6 homologues from other archaea in which the helicase activity is inhibited when bound to Cdc6.  相似文献   

19.
Genomic sequences susceptible to form G-quadruplexes (G4s) are always flanked by other nucleotides, but G4 formation in vitro is generally studied with short synthetic DNA or RNA oligonucleotides, for which bases adjacent to the G4 core are often omitted. Herein, we systematically studied the effects of flanking nucleotides on structural polymorphism of 371 different oligodeoxynucleotides that adopt intramolecular G4 structures. We found out that the addition of nucleotides favors the formation of a parallel fold, defined as the ‘flanking effect’ in this work. This ‘flanking effect’ was more pronounced when nucleotides were added at the 5′-end, and depended on loop arrangement. NMR experiments and molecular dynamics simulations revealed that flanking sequences at the 5′-end abolish a strong syn-specific hydrogen bond commonly found in non-parallel conformations, thus favoring a parallel topology. These analyses pave a new way for more accurate prediction of DNA G4 folding in a physiological context.  相似文献   

20.
Maintenance of genomic integrity is vital to all organisms. A number of human genetic disorders, including Werner Syndrome, Bloom Syndrome and Rothmund–Thomson Syndrome, exhibit genomic instability with some phenotypic characteristics of premature aging and cancer predisposition. Presumably the aberrant cellular and clinical phenotypes in these disorders arise from defects in important DNA metabolic pathways such as replication, recombination or repair. These syndromes are all characterized by defects in a member of the RecQ family of DNA helicases. To obtain a better understanding of how these enzymes function in DNA metabolic pathways that directly influence chromosomal integrity, we have examined the effects of non-covalent DNA modifications on the catalytic activities of purified Werner (WRN) and Bloom (BLM) DNA helicases. A panel of DNA-binding ligands displaying unique properties for interacting with double helical DNA was tested for their effects on the unwinding activity of WRN and BLM helicases on a partial duplex DNA substrate. The levels of inhibition by a number of these compounds were distinct from previously reported values for viral, prokaryotic and eukaryotic helicases. The results demonstrate that BLM and WRN proteins exhibit similar sensitivity profiles to these DNA-binding ligands and are most potently inhibited by the structurally related minor groove binders distamycin A and netropsin (Ki ≤1 µM). The distinct inhibition of WRN and BLM helicases by the minor groove binders suggest that these helicases unwind double-stranded DNA by a related mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号