首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cinnamoyl esterase, ferulic acid esterase A, from Aspergillus niger releases ferulic acid and 5-5- and 8-O-4-dehydrodiferulic acids from plant cell walls. The breakage of one or both ester bonds from dehydrodimer cross-links between plant cell wall polymers is essential for optimal action of carbohydrases on these substrates, but it is not known if cinnamoyl esterases can break these cross-links by cleaving one of the ester linkages which would not release the free dimer. It is difficult to determine the mechanism of the reaction on complex substrates, and so we have examined the catalytic properties of ferulic acid esterase A from Aspergillus niger using a range of synthetic ethyl esterified dehydrodimers (5-5-, 8-5-benzofuran and 8-O-4-) and two 5-5-diferulate oligosaccharides. Our results show that the esterase is able to cleave the three major dehydrodiferulate cross-links present in plant cell walls. The enzyme is highly specific at hydrolysing the 5-5- and the 8-5-benzofuran diferulates but the 8-O-4-is a poorer substrate. The hydrolysis of dehydrodiferulates to free acids occurs in two discrete steps, one involving dissociation of a monoesterified intermediate which is negatively charged at the pH of the reaction. Although ferulic acid esterase A was able to release monoesters as products of reactions with all three forms of diesters, only the 5-5- and the 8-O-4-monoesters were substrates for the enzyme, forming the corresponding free diferulic acids. The esterase cannot hydrolyse the second ester bond from the 8-5-benzofuran monoester and therefore, ferulic acid esterase A does not form 8-5-benzofuran diferulic acid. Therefore, ferulic acid esterase A from Aspergillus niger contributes to total plant cell wall degradation by cleaving at least one ester bond from the diferulate cross-links that exist between wall polymers but does not always release the free acid product.  相似文献   

2.
The superoxide anion scavenging capacity of two flavonols (quercetin and kaempferol) and some of their conjugates (quercetin-3-rhamnoglucoside, quercetin-3-sophoroside, quercetin-3-sulphate, quercetin-3-glucuronide, kaempferol-3-sophoroside, kaempferol-3-glucuronide) and of several hydroxycinnamic acids (caffeic acid, ferulic acid, 5-5 diferulic acid, 8-O-4 diferulic acid and 8-8 diferulic acid) were studied. Superoxide anions were generated non-enzymatically in a phenazine methosulphate-NADH system and assayed by reduction of nitro-blue tetrazolium. Among the flavonols examined, the most effective scavengers of superoxide anions were the sophoroside, glucuronide and rhamnoglucoside conjugates. Conversely, quercetin-3-sulphate and the flavonol aglycones, exhibited some pro-oxidant activity at the range of concentrations tested (0.5-10 microM). These results show that conjugation has a marked effect on the scavenging capacity of flavonols and that the type of conjugate at the 3-position determines the final superoxide scavenging capacity. Caffeic acid and ferulic acid showed no effect on the generation of superoxide anions by phenazine methosulphate-NADH. However, dimerization of ferulic acid enhanced the superoxide scavenging capacity of this hydroxycinnamic acid, but this depended on the type of linkage between the monomers. The order, from highest to lowest, of superoxide radical scavenging capacity for the dimers of ferulic acid was: 5-5-diferulic acid > 8-O-4-diferulic acid > 8-8-diferulic acid.  相似文献   

3.
MacAdam JW  Grabber JH 《Planta》2002,215(5):785-793
We examined relationships among cell wall feruloylation, diferulate cross-linking, p-coumarate deposition, and apoplastic peroxidase (EC 1.11.1.7) activity with changes in the elongation rate of leaf blades of slow and rapid elongating genotypes of tall fescue ( Festuca arundinacea Schreb.). Growth was not directly influenced by ferulic acid deposition but leaf elongation decelerated as 8-5-, 8- O-4-, 8-8-, and 5-5-coupled diferulic acids accumulated in cell walls. Growth rapidly slowed and stopped with the deposition of p-coumarate, which is primarily associated with lignification in grass cell walls. Accretion of ferulate, diferulates and p-coumarate continued after growth ended, into the later stages of secondary wall formation. The concentration of 8-coupled diferulates dwarfed that of the more commonly measured 5-5-coupled isomer, suggesting that the latter dimer is a poor indicator of diferulate cross-linking in cell walls. Further work is required to clearly demonstrate the role of diferulate cross-linking and p-coumaroylated lignins in the cessation of leaf growth in grasses.  相似文献   

4.
The bioconversion of waste residues (by-products) from cereal processing industries requires the cooperation of enzymes able to degrade xylanolytic and cellulosic material. The type A feruloyl esterase from Aspergillus niger, AnFaeA, works synergistically with (1→4)-β-d-xylopyranosidases (xylanases) to release monomeric and dimeric ferulic acid (FA) from cereal cell wall-derived material. The esterase was more effective with a family 11 xylanase from Trichoderma viride in releasing FA and with a family 10 xylanase from Thermoascus aurantiacus in releasing the 5,5′ form of diferulic acid from arabinoxylan (AX) derived from brewers’ spent grain. The converse was found for the release of the phenolic acids from wheat bran-derived AXs. This may be indicative of compositional differences in AXs in cereals.  相似文献   

5.
Diferulic acid forms cross-links in naturally occurring plant cell wall polymers such as arabinoxylans and pectins. We have used model ethyl esterified substrates to find enzymes able to break these cross-links. A tannase from Aspergillus oryzae exhibited esterase activity on several synthetic ethyl esterified diferulates. The efficiency of this esterase activity on most diferulates is low compared to that of a cinnamoyl esterase, FAEA, from Aspergillus niger. Of the diferulate substrates assayed, tannase was most efficient at hydrolysing the first ester bond of the 5–5- type of dimer. Importantly and unlike the cinnamoyl esterase, tannase from A. oryzae is able to hydrolyse both ester bonds from the 8–5-benzofuran dimer, thus forming the corresponding free acid product. These results suggest that tannases may contribute to plant cell wall degradation by cleaving some of the cross-links existing between cell wall polymers.  相似文献   

6.
Very long chain fatty alcohols obtained from plant waxes and beeswax have been reported to lower plasma cholesterol in humans. This review discusses nutritional or regulatory effects produced by wax esters or aliphatic acids and alcohols found in unrefined cereal grains, beeswax, and many plant-derived foods. Reports suggest that 5-20 mg per day of mixed C24-C34 alcohols, including octacosanol and triacontanol, lower low-density lipoprotein (LDL) cholesterol by 21%-29% and raise high-density lipoprotein cholesterol by 8%-15%. Wax esters are hydrolyzed by a bile salt-dependent pancreatic carboxyl esterase, releasing long chain alcohols and fatty acids that are absorbed in the gastrointestinal tract. Studies of fatty alcohol metabolism in fibroblasts suggest that very long chain fatty alcohols, fatty aldehydes, and fatty acids are reversibly inter-converted in a fatty alcohol cycle. The metabolism of these compounds is impaired in several inherited human peroxisomal disorders, including adrenoleukodystrophy and Sj?gren-Larsson syndrome. Reports on dietary management of these diseases confirm that very long chain fatty acids (VLCFA) are normal constituents of the human diet and are synthesized endogenously. Concentrations of VLCFA in blood plasma increase during fasting and when children are placed on ketogenic diets to suppress seizures. Existing data support the hypothesis that VLCFA exert regulatory roles in cholesterol metabolism in the peroxisome and also alter LDL uptake and metabolism.  相似文献   

7.
European and Mediterranean corn borers are two of the most economically important insect pests of maize (Zea mays L.) in North America and southern Europe, respectively. Cell wall structure and composition were evaluated in pith and rind tissues of resistant and susceptible inbred lines as possible corn borer resistance traits. Composition of cell wall polysaccharides, lignin concentration and composition, and cell wall bound forms of hydroxycinnamic acids were measured. As expected, most of the cell wall components were found at higher concentrations in the rind than in the pith tissues, with the exception of galactose and total diferulate esters. Pith of resistant inbred lines had significantly higher concentrations of total cell wall material than susceptible inbred lines, indicating that the thickness of cell walls could be the initial barrier against corn borer larvae attack. Higher concentrations of cell wall xylose and 8-O-4-coupled diferulate were found in resistant inbreds. Stem tunneling by corn borers was negatively correlated with concentrations of total diferulates, 8-5-diferulate and p-coumarate esters. Higher total cell wall, xylose, and 8-coupled diferulates concentrations appear to be possible mechanisms of corn borer resistance.  相似文献   

8.
An esterase was isolated from influenza C virus with a specific activity from 1.7-5 U/mg protein, and its substrate specificity was tested with various naturally occurring O-acylated sialic acids, synthetic carbohydrate acetates, and other esters. The enzyme hydrolyses only acetic acid esters at significant rates. The non-natural substrates 4-methyl-umbelliferyl acetate, 4-nitrophenyl acetate, and alpha-naphthyl acetate are cleaved at highest hydrolysis rates, followed by the natural substrate N-acetyl-9-O-acetylneuraminic acid. The esterase also acts on N-glycoloyl-9-O-acetylneuraminic acid and, much slower, on N-acetyl-4-O-acetylneuraminic acid; N-acetyl-7-O-acetylneuraminic acid is not hydrolysed. 2-Deoxy-2,3-didehydro-N-acetyl-9-O-acetylneuraminic acid is also a substrate for this enzyme, however, 6-O-acetylated N-acetylmannosamine and glucose are not. Esterification of the carboxyl function of sialic acids strongly reduces or prevents esterase action on O-acetyl groups. The carboxyl ester is not hydrolysed. The relative cleavage rates also depend on the type of the non-sialic acid part of the molecule. N-Acetyl-9-O-acetylneuraminic acid as component of sialyllactose and rat serum glycoprotein shows hydrolysis rates close to the free form of this sugar, while acetyl ester groups of bovine submandibular gland mucin and rat erythrocytes are hydrolysed at slower rates. Gangliosides and 4-O-acetylated glycoproteins are no substrates for the purified enzyme. A slow hydrolysis is observed by incubation of 9-O-acetylated GD1a with intact influenza C viruses. As other natural acetyl esters (acetyl-CoA and acetylthiocholine iodide) are not hydrolysed, the enzyme can be classified as sialate 9(4)-O-acetylesterase (EC 3.1.1.53).  相似文献   

9.
Two new dehydrotriferulic acids were isolated from saponified maize bran insoluble fiber using Sephadex LH-20 chromatography followed by semi-preparative RP-HPLC. Based on UV-spectroscopy, mass spectroscopy and one- and two-dimensional NMR experiments, the structures were identified as 8-O-4,8-O-4-dehydrotriferulic acid and 8-8(cyclic),8-O-4-dehydrotriferulic acid. Which of the possible phenols in the initially formed 8-8-dehydrodiferulate was etherified by 4-O-8-coupling with ferulate has been unambiguously elucidated. The ferulate dehydrotrimers which give rise to these dehydrotriferulic acids following saponification are presumed, like the dehydrodiferulates, to cross-link polysaccharides. Neither dehydrotriferulic acid described here involves a 5-5-dehydrodiferulic acid unit; only the 5-5-dehydrodimer may be formed intramolecularly. However, whether dehydrotriferulates are capable of cross-linking more than two polysaccharide chains remains open. Although the levels of the isolated ferulate dehydrotrimers are lower than those of the ferulate dehydrodimers, the isolation now of three different dehydrotriferulates indicates that trimers contribute to a strong network cross-linking plant cell wall polysaccharides.  相似文献   

10.
Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.  相似文献   

11.
ABSTRACT

Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.  相似文献   

12.
Alkaline hydrolysis liberated ferulic and diferulic acid from polysaccharides of the Avena coleoptile ( Avena sativa L. cv. Victory I) cell walls. The amount of the two phenolic acids bound to cell walls increased substantially at day 4–5 after sowing, when the growth rate of the coleoptile started to decrease. The level of these acids was almost constant from the tip to base in 3-day-old coleoptiles, but increased toward the basal zone in 4- and 5-day-old ones. The ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age and zone. An increase in the amount of ferulic and diferulic acids bound to cell wall polysaccharides correlated with a decrease in extensibility and with an increase in minimum stress-relaxation time and relaxation rate of the cell wall. The level of lignin in the cellulose fraction increased as coleoptiles aged, but this increase did not correlate with changes in mechanical properties of the cell walls. These results suggest that ferulic acid, ester-linked to cell wall polysaccharides, is oxidized to give diferulic acid, which makes the cell wall mechanically rigid by cross-linking matrix polysaccharides and results in limited cell extension growth. In addition, it is probable that the step of feruloylation of cell wall polysaccharides is rate-limiting in the formation of in-termolecular bridges by diferulic acid in Avena coleoptile cell walls.  相似文献   

13.
Two chimeric enzymes, FLX and FLXLC, were designed and successfully overproduced in Aspergillus niger. FLX construct is composed of the sequences encoding the feruloyl esterase A (FAEA) fused to the endoxylanase B (XYNB) of A. niger. A C-terminal carbohydrate-binding module (CBM family 1) was grafted to FLX, generating the second hybrid enzyme, FLXLC. Between each partner, a hyperglycosylated linker was included to stabilize the constructs. Hybrid proteins were purified to homogeneity, and molecular masses were estimated to be 72 and 97 kDa for FLX and FLXLC, respectively. Integrity of hybrid enzymes was checked by immunodetection that showed a single form by using antibodies raised against FAEA and polyhistidine tag. Physicochemical properties of each catalytic module of the bifunctional enzymes corresponded to those of the free enzymes. In addition, we verified that FLXLC exhibited an affinity for microcrystalline cellulose (Avicel) with binding parameters corresponding to a Kd of 9.9 x 10(-8) M for the dissociation constant and 0.98 micromol/g Avicel for the binding capacity. Both bifunctional enzymes were investigated for their capacity to release ferulic acid from natural substrates: corn and wheat brans. Compared to free enzymes FAEA and XYNB, a higher synergistic effect was obtained by using FLX and FLXLC for both substrates. Moreover, the release of ferulic acid from corn bran was increased by using FLXLC rather than FLX. This result confirms a positive role of the CBM. In conclusion, these results demonstrated that the fusion of naturally free cell wall hydrolases and an A. niger-derived CBM onto bifunctional enzymes enables the increase of the synergistic effect on the degradation of complex substrates.  相似文献   

14.
Sitosterolemia is an autosomal recessive disorder caused by mutations in the ABCG5 or ABCG8 half-transporter genes. These mutations disrupt the mechanism that distinguishes between absorbed sterols and is most prominently characterized by hyperabsorption and impaired biliary elimination of dietary plant sterols. Sitosterolemia patients retain 15-20% of dietary plant sterols, whereas normal individuals absorb less than 1-5%. Normotensive Wistar Kyoto inbred (WKY inbred), spontaneously hypertensive rat (SHR), and stroke-prone spontaneously hypertensive rat (SHRSP) strains also display increased absorption and decreased elimination of dietary plant sterols. To determine if the genes responsible for sitosterolemia in humans are also responsible for phytosterolemia in rats, we sequenced the Abcg5 and Abcg8 genes in WKY inbred, SHR, and SHRSP rat strains. All three strains possessed a homozygous guanine-to-thymine transversion in exon 12 of the Abcg5 gene that results in the substitution of a conserved glycine residue for a cysteine amino acid in the extracellular loop between the fifth and sixth membrane-spanning domains of the ATP binding cassette half-transporter, sterolin-1. The identification of this naturally occurring mutation confirms that these rat strains are important animal models of sitosterolemia in which to study the mechanisms of sterol trafficking.  相似文献   

15.
To clarify the intestinal absorption pathway of medium-chain fatty acids from MLM-type structured triacylglycerols containing both medium- and long-chain fatty acids, we studied the lymphatic transport of 1,3-dioctanoyl-2-linoleoyl-sn-glycerol (8:0/18:2/8:0), 1,3-didecanoyl-2-linoleoyl-sn-glycerol (10:0/18:2/10:0), and 1,3-didodecanoyl-2-linoleoyl-sn-glycerol (12:0/18:2/12:0) in a rat model. Safflower oil was used in the absorption study in order to compare the absorption of medium-chain fatty acids and long-chain fatty acids. The triacylglycerol species of lymph lipids were separated on a reversed-phase high performance liquid chromatograph (RP-HPLC) and identified by atmospheric pressure chemical ionization mass spectrometry. The composition of triacylglycerols was quantified by RP-HPLC with evaporative light scattering detection. The intact MLM-type triacylglycerols were detected in the lymph lipids after administration of the specific structured triacylglycerols (STAG). The recoveries of 8:0/18:2/8:0, 10:0/18:2/10:0, and 12:0/18:2/12:0 were 0.6%, 12%, and 5%, respectively. Several new triacylglycerol species were detected in the lymph lipids, including MLL-, LLL-, and MMM-type triacylglycerols.From the present study we conclude that the medium-chain fatty acids from STAG, in addition to absorption into the portal blood as free fatty acids, are absorbed by the same pathway as the conventional long-chain triacylglycerols, that is, they are hydrolyzed into free fatty acids, absorbed and activated into CoA, and reacylated into triacylglycerols in the enterocyte. The hydrolysis of MLM-type STAG is predominantly partial hydrolysis, whereas part of the STAG can also be hydrolyzed to free glycerol and free fatty acids.  相似文献   

16.
A new, rapid HPLC-PAD-APCI/MS assay has been developed in order to measure accurately the amount of p-coumaric, E- and Z-ferulic acid and the dehydrodimers of ferulic acid in cereal grain. In the positive ionisation mode, MS patterns gave additional information for the identification of the dimers. The time required and the quantities of solvents employed in the developed analytical method are much lower than those involved in previously available assays of these compounds, thus making the method suitable for the screening of cereal genotypes. Application of the method to accessions of maize, wheat and sorghum showed that E-ferulic was the most abundant phenylpropanoid, whilst the major dimer was 8-O-4' dehydrodimer of ferulic acid followed by the 5-5' and then the 8-5' forms. Maize grains, especially of the Mexican landraces, contained the highest levels of these dimers.  相似文献   

17.
The cellulosome of Clostridium thermocellum is a multiprotein complex with endo- and exocellulase, xylanase, beta-glucanase, and acetyl xylan esterase activities. XynY and XynZ, components of the cellulosome, are composed of several domains including xylanase domains and domains of unknown function (UDs). Database searches revealed that the C- and N-terminal UDs of XynY and XynZ, respectively, have sequence homology with the sequence of a feruloyl esterase of strain PC-2 of the anaerobic fungus Orpinomyces. Purified cellulosomes from C. thermocellum were found to hydrolyze FAXX (O-(5-O-[(E)-feruloyl]-alpha-L-arabinofuranosyl)-(1-->3)-O-beta-D- xyl opyranosyl-(1-->4)-D-xylopyranose) and FAX(3) (5-O-[(E)-feruloyl]-[O-beta-D-xylopyranosyl-(1-->2)]-O-alpha-L- arabinofuranosyl-[1-->3])-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose) , yielding ferulic acid as a product, indicating that they have feruloyl esterase activity. Nucleotide sequences corresponding to the UDs of XynY and XynZ were cloned into Escherichia coli, and the expressed proteins hydrolyzed FAXX and FAX(3). The recombinant feruloyl esterase domain of XynZ alone (FAE(XynZ)) and with the adjacent cellulose binding domain (FAE-CBD(XynZ)) were characterized. FAE-CBD(XynZ) had a molecular mass of 45 kDa that corresponded to the expected product of the 1,203-bp gene. K(m) and V(max) values for FAX(3) were 5 mM and 12.5 U/mg, respectively, at pH 6.0 and 60 degrees C. PAX(3), a substrate similar to FAX(3) but with a p-coumaroyl group instead of a feruloyl moiety was hydrolyzed at a rate 10 times slower. The recombinant enzyme was active between pH 3 to 10 with an optimum between pH 4 to 7 and at temperatures up to 70 degrees C. Treatment of Coastal Bermuda grass with the enzyme released mainly ferulic acid and a lower amount of p-coumaric acid. FAE(XynZ) had similar properties. Removal of the 40 C-terminal amino acids, residues 247 to 286, of FAE(XynZ) resulted in protein without activity. Feruloyl esterases are believed to aid in a release of lignin from hemicellulose and may be involved in lignin solubilization. The presence of feruloyl esterase in the C. thermocellum cellulosome together with its other hydrolytic activities demonstrates a powerful enzymatic potential of this organelle in plant cell wall decomposition.  相似文献   

18.
N-Glycolylneuraminic acid (Neu5Gc) is a widely expressed sialic acid in mammalian cells. Although humans are genetically deficient in producing Neu5Gc, small amounts are present in human cells in vivo. A dietary origin was suggested by human volunteer studies and by observing that free Neu5Gc is metabolically incorporated into cultured human carcinoma cells by unknown mechanisms. We now show that free Neu5Gc uptake also occurs in other human and mammalian cells. Inhibitors of certain non-clathrin-mediated endocytic pathways reduce Neu5Gc accumulation. Studies with human mutant cells show that the lysosomal sialic acid transporter is required for metabolic incorporation of free Neu5Gc. Incorporation of glycosidically bound Neu5Gc from exogenous glycoconjugates (relevant to human gut epithelial exposure to dietary Neu5Gc) requires the transporter as well as the lysosomal sialidase, which presumably acts to release free Neu5Gc. Thus, exogenous Neu5Gc reaches lysosomes via pinocytic/endocytic pathways and is exported in free form into the cytosol, becoming available for activation and transfer to glycoconjugates. In contrast, N-glycolylmannosamine (ManNGc) apparently traverses the plasma membrane by passive diffusion and becomes available for conversion to Neu5Gc in the cytosol. This mechanism can also explain the metabolic incorporation of chemically synthesized unnatural sialic acids, as reported by others. Finally, to our knowledge, this is the first example of delivery to the cytosol of an extracellular small molecule that cannot cross the plasma membrane, utilizing fluid pinocytosis and a specific lysosomal transporter. The approach could, thus, potentially be generalized to any small molecule that has a specific lysosomal transporter but not a plasma membrane transporter.  相似文献   

19.
The distribution of esterase in subcellular fractions of rat liver homogenates was compared with that of the lysosomal enzyme acid phosphatase and the microsomal enzyme glucose 6-phosphatase. Most of the esterase from sucrose homogenate sediments with glucose 6-phosphatase and about 8% is recovered in the supernatant. However, up to 53% of the esterase can be washed from microtome sections of unfixed liver, in which less cellular damage would be expected than that caused by homogenization. About 40% of both esterase and acid phosphatase are recovered in the soluble fraction after homogenization in aqueous glycerol or in a two-phase system (Arcton 113-0.25m-sucrose), although glucose 6-phosphatase is still recovered in the microsomal fraction of such homogenates. The esterase of the microsomal fraction prepared from a sucrose homogenate is much more readily released by treatment with 0.26% deoxycholate than are other constituents of this fraction. The release of esterase from the microsomal fraction by the detergent and its concomitant release with acid phosphatase after homogenization in glycerol or the two-phase system suggests that a greater proportion of esterase may be present in lysosomes of the intact cell than is indicated by the results of standard fractionation procedures.  相似文献   

20.
The active sites of feruloyl esterases from mesophilic and thermophilic sources were probed using methyl esters of phenylalkanoic acids. Only 13 out of 26 substrates tested were significant substrates for all the enzymes. Lengthening or shortening the aliphatic side chain while maintaining the same aromatic substitutions completely abolished activity for both enzymes, which demonstrates the importance of the correct distance between the aromatic group and the ester bond. Maintaining the phenylpropanoate structure but altering the substitutions of the aromatic ring demonstrated that the type-A esterase from the mesophilic fungus Fusarium oxysporum (FoFaeA) showed a preference for methoxylated substrates, in contrast to the type-B esterase from the same source (FoFaeB) and the thermophilic type-B (StFaeB) and type-C (StFaeC) from Sporotrichum thermophile, which preferred hydroxylated substrates. All four esterases hydrolyzed short chain aliphatic acid (C2-C4) esters of p-nitrophenol, but not the C12 ester of laurate. All the feruloyl esterases were able to release ferulic acid from the plant cell wall material in conjunction with a xylanase, but only the type-A esterase FoFaeA was effective in releasing the 5,5' form of diferulic acid. The thermophilic type-B esterase had a lower catalytic efficiency than its mesophilic counterpart, but released more ferulic acid from plant cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号