首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Production of inositol hexakisphosphate (IP6) by Ipk1, the inositol-1,3,4,5,6-pentakisphosphate 2-kinase, is required for Gle1-mediated mRNA export in Saccharomyces cerevisiae cells. To examine the network of interactions that require IP6 production, an analysis of fitness defects was conducted in mutants harboring both an ipk1 null allele and a mutant allele in genes encoding nucleoporins or transport factors. Enhanced lethality was observed with a specific subset of mutants, including nup42, nup116, nup159, dbp5, and gle2, all of which had been previously connected to Gle1 function. Complementation of the nup116Deltaipk1Delta and nup42Deltaipk1Delta double mutants did not require the Phe-Gly repeat domains in the respective nucleoporins, suggesting that IP6 was acting subsequent to heterogeneous nuclear ribonucleoprotein targeting to the nuclear pore complex. With Nup42 and Nup159 localized exclusively to the nuclear pore complex cytoplasmic side, we speculated that IP6 may regulate a cytoplasmic step in mRNA export. To test this prediction, the spatial requirements for the production of IP6 were investigated. Restriction of Ipk1 to the cytoplasm did not block IP6 production. Moreover, coincident sequestering of both Ipk1 and Mss4 (an enzyme required for phosphatidylinositol 4,5-bisphosphate production) to the cytoplasm also did not block IP6 production. Given that the kinase required for inositol 1,3,4,5,6-pentakisphosphate production (Ipk2) is localized in the nucleus, these results indicated that soluble inositides were diffusing between the nucleus and the cytoplasm. Additionally, the cytoplasmic production of IP6 by plasma membrane-anchored Ipk1 rescued a gle1-2 ipk1-4 synthetic lethal mutant. Thus, cytoplasmic IP6 production is sufficient for mediating the Gle1-mRNA export pathway.  相似文献   

2.
Over 30 inositol polyphosphates are known to exist in mammalian cells; however, the majority of them have uncharacterized functions. In this study we investigated the molecular basis of synthesis of highly phosphorylated inositol polyphosphates (such as inositol tetrakisphosphate, inositol pentakisphosphate (IP5), and inositol hexakisphosphate (IP6)) in rat cells. We report that heterologous expression of rat inositol polyphosphate kinases rIPK2, a dual specificity inositol trisphosphate/inositol tetrakisphosphate kinase, and rIPK1, an IP5 2-kinase, were sufficient to recapitulate IP6 synthesis from inositol 1,4,5-trisphosphate in mutant yeast cells. Overexpression of rIPK2 in Rat-1 cells increased inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) levels about 2-3-fold compared with control. Likewise in Rat-1 cells, overexpression of rIPK1 was capable of completely converting I(1,3,4,5,6)P5 to IP6. Simultaneous overexpression of both rIPK2 and rIPK1 in Rat-1 cells increased both IP5 and IP6 levels. To reduce IPK2 activity in Rat-1 cells, we introduced vector-based short interference RNA against rIPK2. Cells harboring the short interference RNA had a 90% reduction of mRNA levels and a 75% decrease of I(1,3,4,5,6)P5. These data confirm the involvement of IPK2 and IPK1 in the conversion of inositol 1,4,5-trisphosphate to IP6 in rat cells. Furthermore these data suggest that rIPK2 and rIPK1 act as key determining steps in production of IP5 and IP6, respectively. The ability to modulate the intracellular inositol polyphosphate levels by altering IPK2 and IPK1 expression in rat cells will provide powerful tools to study the roles of I(1,3,4,5,6)P5 and IP6 in cell signaling.  相似文献   

3.
The enzyme(s) responsible for the production of inositol hexakisphosphate (InsP(6)) in vertebrate cells are unknown. In fungal cells, a 2-kinase designated Ipk1 is responsible for synthesis of InsP(6) by phosphorylation of inositol 1,3,4,5,6-pentakisphosphate (InsP(5)). Based on limited conserved sequence motifs among five Ipk1 proteins from different fungal species, we have identified a human genomic DNA sequence on chromosome 9 that encodes human inositol 1,3,4,5,6-pentakisphosphate 2-kinase (InsP(5) 2-kinase). Recombinant human enzyme was produced in Sf21 cells, purified, and shown to catalyze the synthesis of InsP(6) or phytic acid in vitro. The recombinant protein converted 31 nmol of InsP(5) to InsP(6)/min/mg of protein (V(max)). The Michaelis-Menten constant for InsP(5) was 0.4 microM and for ATP was 21 microM. Saccharomyces cerevisiae lacking IPK1 do not produce InsP(6) and show lethality in combination with a gle1 mutant allele. Here we show that expression of the human InsP(5) 2-kinase in a yeast ipk1 null strain restored the synthesis of InsP(6) and rescued the gle1-2 ipk1-4 lethal phenotype. Northern analysis on human tissues showed expression of the human InsP(5) 2-kinase mRNA predominantly in brain, heart, placenta, and testis. The isolation of the gene responsible for InsP(6) synthesis in mammalian cells will allow for further studies of the InsP(6) signaling functions.  相似文献   

4.
5.
This review assesses the authenticity of inositol hexakisphosphate (InsP(6)) being a wide-ranging regulator of many important cellular functions. Against a background in which the possible importance of localized InsP(6) metabolism is discussed, there is the facile explanation that InsP(6) is merely an "inactive" precursor for the diphosphorylated inositol phosphates. Indeed, many of the proposed cellular functions of InsP(6) cannot sustain a challenge from the implementation of a rigorous set of criteria, which are designed to avoid experimental artefacts.  相似文献   

6.
In colon enterocytes and in well-differentiated colon cancer CaCo-2 cells, InsP6 (inositol hexakisphosphate) inhibits iron uptake by forming extracellular insoluble iron/InsP6 complexes. In this study, we confirmed that CaCo-2 cells are not able to take up iron/InsP6 but, interestingly, found that the cells are able to internalize metal-free and Cr3+-bound InsP6. Thus, the inability of CaCo-2 cells to take up iron/InsP6 complexes seems to be due to the iron-bound state of InsP6. Since recently we demonstrated that the highly malignant bronchial carcinoma H1299 cells internalize and process InsP6, we examined whether these cells may be able to take up iron/InsP6 complexes. Indeed, we found that InsP6 dose-dependently increased uptake of iron and demonstrated that in the iron-bound state InsP6 is more effectively internalized than in the metal-free or Cr3+-bound state, indicating that H1299 cells preferentially take up iron/InsP6 complexes. Electron microscope and cell fraction assays indicate that after uptake H1299 cells mainly stored InsP6/iron in lysosomes as large aggregates, of which about 10% have been released to the cytosol. However, this InsP6-mediated iron transport had no significant effects on cell viability. This result together with our finding that the well-differentiated CaCo-2 cells did not, but the malignant H1299 cells preferentially took up iron/InsP6, may offer the possibility to selectively transport cytotoxic substances into tumour cells.  相似文献   

7.
Inositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo‐inositol hexakisphosphate (InsP6). Here, we report that Arabidopsis and maize InsP6 transporter mutants have elevated levels of inositol pyrophosphates in their seed, providing unequivocal identification of their presence in plant tissues. We also show that plant seeds store a little over 1% of their inositol phosphate pool as InsP7 and InsP8. Many tissues, including, seed, seedlings, roots and leaves accumulate InsP7 and InsP8, thus synthesis is not confined to tissues with high InsP6. We have identified two highly similar Arabidopsis genes, AtVip1 and AtVip2, which are orthologous to the yeast and mammalian VIP kinases. Both AtVip1 and AtVip2 encode proteins capable of restoring InsP7 synthesis in yeast mutants, thus AtVip1 and AtVip2 can function as bonafide InsP6 kinases. AtVip1 and AtVip2 are differentially expressed in plant tissues, suggesting non‐redundant or non‐overlapping functions in plants. These results contribute to our knowledge of inositol phosphate metabolism and will lay a foundation for understanding the role of InsP7 and InsP8 in plants.  相似文献   

8.
The formation and metabolism of inositol pentakis-and hexakisphosphates (InsP5 and InsP6) were investigated in Xenopus laevis oocytes. After [3H]inositol injection, [3H]InsP5 and subsequently [3H]Insp6 increased progressively over 72 h. In intact oocytes, [3H]InsP5 was progressively converted to [3H]InsP6 from 6 to 72 h of incubation and was not metabolized to lower inositol phosphates. In contrast, [3H]InsP6 remained unmetabolized for up to 72 h. These data are consistent with the kinetics of the increases in [3H]InsP5 and [3H]InsP6 in [3H]inositol-labeled oocytes. The highly phosphorylated inositols showed significant changes during oogenesis and maturation. In oocytes incubated for 48 h after [3H]inositol injection, the radioactive incorporation into polyphosphoinositols increased progressively from stage 3 to stage 6, with 5- and 6-fold rises (cpm/mg protein) for [3H]InsP5 and [3H]InsP6, respectively. These developmental changes were associated with 5-fold increases in [3H]inositol tetrakisphosphate between stages 3 and 6 of oogenesis. Induction of oocyte maturation by progesterone (1 microM) during the last 12 of a 36-h incubation with [3H]inositol doubled the levels of [3H]InsP6 relative to [3H]InsP5, suggesting that the activity of inositol pentakisphosphate kinase increases during maturation. These results provide direct evidence for metabolic conversion of InsP5 to InsP6 in animal cells and show that the higher inositol polyphosphates, unlike the lower phosphoinositols, are extraordinarily stable. These species increase markedly during ovum development and may play a regulatory role in oogenesis and maturation.  相似文献   

9.
The energetics of signal propagation between different functional domains (i.e. the binding sites for O2, inositol hexakisphospate (IHP), and bezafibrate (BZF)) of human HbA0 was analyzed at different heme ligation states and through the use of a stable, partially heme ligated intermediate. Present data allow three main conclusions to be drawn, and namely: (i) IHP and BZF enhance each others binding as the oxygenation proceeds, the coupling free energy going from close to zero in the deoxy state to -3.4 kJ/mol in the oxygenated form; (ii) the simultaneous presence of IHP and BZF stabilizes the hemoglobin T quaternary structure at very low O2 pressures, but as oxygenation proceeds it does not impair the transition toward the R structure, which indeed occurs also under these conditions; (iii) under room air pressure (i.e. pO2 = 150 torr), IHP and BZF together induce the formation of an asymmetric dioxygenated hemoglobin tetramer, whose features appear reminiscent of those suggested for transition state species (i.e. T- and R-like tertiary conformation(s) within a quaternary R-like structure).  相似文献   

10.
The region of Bacillus stearothermophilus strain NCA 1503 23-S ribosomal RNA protected from T1 ribonuclease digestion by the 50-S ribosomal subunit protein L1 from Escherichia coli has been established. The sequence of 115 nucleotides is compared to the analogous region in E. coli. The similar behaviour of the RNA towards the recognition of protein L1 may be explained in terms of secondary base-pairing, even though there exists almost 40% difference between the primary nucleotide sequences.  相似文献   

11.
Phytic acid (myo-inositol hexakisphosphate, InsP6) is an important phosphate store and signal molecule in plants. However, low-phytate plants are being developed to minimize the negative health effects of dietary InsP6 and pollution caused by undigested InsP6 in animal waste. InsP6 levels were diminished in transgenic potato plants constitutively expressing an antisense gene sequence for myo-inositol 3-phosphate synthase (IPS, catalysing the first step in InsP6 biosynthesis) or Escherichia coli polyphosphate kinase. These plants were less resistant to the avirulent pathogen potato virus Y and the virulent pathogen tobacco mosaic virus (TMV). In Arabidopsis thaliana, mutation of the gene for the enzyme catalysing the final step of InsP6 biosynthesis (InsP5 2-kinase) also diminished InsP6 levels and enhanced susceptibility to TMV and to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae. Arabidopsis thaliana has three IPS genes (AtIPS1-3). Mutant atips2 plants were depleted in InsP6 and were hypersusceptible to TMV, turnip mosaic virus, cucumber mosaic virus and cauliflower mosaic virus as well as to the fungus Botrytis cinerea and to P. syringae. Mutant atips2 and atipk1 plants were as hypersusceptible to infection as plants unable to accumulate salicylic acid (SA) but their increased susceptibility was not due to reduced levels of SA. In contrast, mutant atips1 plants, which were also depleted in InsP6, were not compromised in resistance to pathogens, suggesting that a specific pool of InsP6 regulates defence against phytopathogens.  相似文献   

12.
The past ten years have seen a contained explosion of interest in inositol pyrophosphates. The early cloning of the IP6Ks and the more recent identification of the PP-IP5Ks have allowed the development of essential experimental tools to investigate the physiological role of inositol pyrophosphates. However, for this exciting field of research to gain momentum, simpler and more reliable research protocols need to be further developed. The ability to resolve and quantify inositol pyrophosphates using gel electrophoresis (Losito et al., 2009) has dramatically altered the way we are studying this class of molecules, opening new avenues for research. The use of this technology to resolve, detect and characterize inositol pyrophosphates extracted from cells certainly represents one desirable aim. The most crucial objective, however, is to obtain definite proof of the new mechanism of post-translational modification by identifying with biophysical methods the presence in vivo of pyrophosphorylated serines. This will hopefully precipitate the development of new ways to detect this modification, for example through the production of antibodies that specifically recognize pyrophosphorylated serines.  相似文献   

13.
The inositol pyrophosphate disphosphoinositol pentakisphosphate (PP-InsP(3)/InsP(7)) is formed in mammals by two recently cloned inositol hexakiphosphate kinases, InsP(6)K1 and InsP(6)K2 (Saiardi, A., Erdjument-Bromage, H., Snowman, A. M., Tempst, P., and Snyder, S. H. (1999) Curr. Biol. 9, 1323-1326). We now report the identification, cloning, and characterization of a third InsP(7) forming enzyme designated InsP(6)K3. InsP(6)K3 displays 50 and 45% sequence identity to InsP(6)K1 and InsP(6)K2, respectively, with a smaller mass (46 kDa) and a more basic character than the other two enzymes. InsP(6)K3 is most enriched in the brain where its localization resembles InsP(6)K1 and InsP(6)K2. Intracellular disposition discriminates the three enzymes with InsP(6)K2 being exclusively nuclear, InsP(6)K3 predominating in the cytoplasm, and InsP(6)K1 displaying comparable nuclear and cytosolic densities.  相似文献   

14.
After priming by a number of different host, bacterial and chemical agents, human neutrophils may be stimulated to produce a greater respiratory burst than would be elicited by the stimulus alone. Other neutrophil functions may be similarly enhanced by pre-exposure to a priming agent. We describe here a new extracellular role for inositol hexakisphosphate (InsP6) as a priming agent for a variety of human neutrophil functional responses. Preincubation of the cells with InsP6 alone (up to 250 microM) has no stimulatory effect upon the basal production of reactive oxygen intermediates but the response to a subsequent stimulus (FMLP, PMA or phagocytic particles) is substantially enhanced. Levels 100-200% higher than 'stimulus only' controls have been recorded. Peak enhancement of the FMLP-induced oxidative response occurs after 1-2 min preincubation with InsP6 and the effect is dose-dependent (maximum at approx. 100 microM InsP6). As others have shown FMLP stimulation of superoxide anion production has no external Ca2+ dependence but the presence of low levels of Ca2+ and Mg2+ (0.1 mM) during priming appears to be an essential requirement for full expression. Reports of intracellular concentrations of InsP6 in mammalian cells in the 30-100 microM range suggest that the local release of this inositol polyphosphate from damaged or effect cells could have a physiologically important modulatory role on neutrophil functions.  相似文献   

15.
Eukaryotes possess numerous inositol phosphate (IP) and diphosphoinositol phosphate (PP-IPs or inositol pyrophosphates) species that act as chemical codes important for intracellular signaling pathways. Production of IP and PP-IP molecules occurs through several classes of evolutionarily conserved inositol phosphate kinases. Here we report the characterization of a human inositol hexakisphosphate (IP6) and diphosphoinositol pentakisphosphate (PP-IP5 or IP7) kinase with similarity to the yeast enzyme Vip1, a recently identified IP6/IP7 kinase (Mulugu, S., Bai, W., Fridy, P. C., Bastidas, R. J., Otto, J. C., Dollins, D. E., Haystead, T. A., Ribeiro, A. A., and York, J. D. (2007) Science 316, 106-109). Recombinant human VIP1 exhibits in vitro IP6 and IP7 kinase activities and restores IP7 synthesis when expressed in mutant yeast. Expression of human VIP1 in HEK293T cells engineered to produce high levels of IP7 results in dramatic increases in bisdiphosphoinositol tetrakisphosphate (PP2-IP4 or IP8). Northern blot analysis indicates that human VIP1 is expressed in a variety of tissues and is enriched in skeletal muscle, heart, and brain. The subcellular distribution of tagged human VIP1 is indicative of a cytoplasmic non-membrane localization pattern. We also characterized human and mouse VIP2, an additional gene product with nearly 90% similarity to VIP1 in the kinase domain, and observed both IP6 and IP7 kinase activities. Our data demonstrate that human VIP1 and VIP2 function as IP6 and IP7 kinases that act along with the IP6K/Kcs1-class of kinases to convert IP6 to IP8 in mammalian cells, a process that has been found to occur in response to various stimuli and signaling events.  相似文献   

16.
Reduction of phytate is a major goal of plant breeding programs to improve the nutritional quality of crops. Remarkably, except for the storage organs of crops such as barley, maize and soybean, we know little of the stereoisomeric composition of inositol phosphates in plant tissues. To investigate the metabolic origins of higher inositol phosphates in photosynthetic tissues, we have radiolabelled leaf tissue of Solanum tuberosum with myo-[2-3H]inositol, undertaken a detailed analysis of inositol phosphate stereoisomerism and permeabilized mesophyll protoplasts in media containing inositol phosphates. We describe the inositol phosphate composition of leaf tissue and identify pathways of inositol phosphate metabolism that we reveal to be common to other kingdoms. Our results identify the metabolic origins of a number of higher inositol phosphates including ones that are precursors of cofactors, or cofactors of plant hormone-receptor complexes. The present study affords alternative explanations of the effects of disruption of inositol phosphate metabolism reported in other species, and identifies different inositol phosphates from that described in photosynthetic tissue of the monocot Spirodela polyrhiza. We define the pathways of inositol hexakisphosphate turnover and shed light on the occurrence of a number of inositol phosphates identified in animals, for which metabolic origins have not been defined.  相似文献   

17.
Saiardi et al. (Saiardi, A., Erdjument-Bromage, H., Snowman, A., Tempst, P., and Snyder, S. H. (1999) Curr. Biol. 9, 1323-1326) previously described the cloning of a kinase from yeast and two kinases from mammals (types 1 and 2), which phosphorylate inositol hexakisphosphate (InsP(6)) to diphosphoinositol pentakisphosphate, a "high energy" candidate regulator of cellular trafficking. We have now studied the significance of InsP(6) kinase activity in Saccharomyces cerevisiae by disrupting the kinase gene. These ip6kDelta cells grew more slowly, their levels of diphosphoinositol polyphosphates were 60-80% lower than wild-type cells, and the cells contained abnormally small and fragmented vacuoles. Novel activities of the mammalian and yeast InsP(6) kinases were identified; inositol pentakisphosphate (InsP(5)) was phosphorylated to diphosphoinositol tetrakisphosphate (PP-InsP(4)), which was further metabolized to a novel compound, tentatively identified as bis-diphosphoinositol trisphosphate. The latter is a new substrate for human diphosphoinositol polyphosphate phosphohydrolase. Kinetic parameters for the mammalian type 1 kinase indicate that InsP(5) (K(m) = 1.2 micrometer) and InsP(6) (K(m) = 6.7 micrometer) compete for phosphorylation in vivo. This is the first time a PP-InsP(4) synthase has been identified. The mammalian type 2 kinase and the yeast kinase are more specialized for the phosphorylation of InsP(6). Synthesis of the diphosphorylated inositol phosphates is thus revealed to be more complex and interdependent than previously envisaged.  相似文献   

18.
Smooth muscle cells (SMC) from human bronchi were isolated by elastase treatment, subcultured, and characterized by their positive reaction with a monoclonal antibody against alpha-smooth muscle actin (alpha SMA). In each cell line tested, at least 95% of the cells were positively stained. The functional properties of these cells were examined by measuring the metabolism of inositol phosphates (IPs). For that purpose, cells were incubated for 3 days before reaching confluency in the presence of myo-[3H]inositol in order to label the phosphoinositide pool, and the various [3H]IPs were separated by HPLC on a SAX column with a phosphate gradient. IP1 isomers were separated in three peaks; IP2, IP3, IP4, IP5 and IP6 (phytic acid) were each eluted as single peaks. The identity of the [3H]peaks was verified with corresponding [3H]IP standards. The accumulation of [3H]IPs was measured by incubating cells up to 30 min in the presence of 10 mM LiCl, with or without a bronchoconstrictor agent (carbachol, histamine, PGF2 alpha). Histamine, 10(-4) M, elicited a four times larger IP accumulation than carbachol, 10(-4) M, and than PGF2 alpha, 5 10(-5) M. Dose-response curves were established for histamine and carbachol in the range 10(-7)-10(-4) M. At 10(-7) M, carbachol was more effective than histamine in stimulating the IP metabolism. Atropine blocked the response to carbachol, and diphenhydramine inhibited the effect of histamine, indicating the specificity of the response to the agonists. These results indicate that cultured human bronchial SMC are a suitable preparation for studying physiological aspects of membrane transduction in the airways.  相似文献   

19.
Bolger TA  Folkmann AW  Tran EJ  Wente SR 《Cell》2008,134(4):624-633
Gene expression requires proper messenger RNA (mRNA) export and translation. However, the functional links between these consecutive steps have not been fully defined. Gle1 is an essential, conserved mRNA export factor whose export function is dependent on the small molecule inositol hexakisphosphate (IP(6)). Here, we show that both Gle1 and IP(6) are required for efficient translation termination in Saccharomyces cerevisiae and that Gle1 interacts with termination factors. In addition, Gle1 has a conserved physical association with the initiation factor eIF3, and gle1 mutants display genetic interactions with the eIF3 mutant nip1-1. Strikingly, gle1 mutants have defects in initiation, whereas strains lacking IP(6) do not. We propose that Gle1 functions together with IP(6) and the DEAD-box protein Dbp5 to regulate termination. However, Gle1 also independently mediates initiation. Thus, Gle1 is uniquely positioned to coordinate the mRNA export and translation mechanisms. These results directly impact models for perturbation of Gle1 function in pathophysiology.  相似文献   

20.
The involvement of phosphoinositide hydrolysis in the action of oxytocin and vasopressin on the uterus was investigated in gestational myometrium and decidua cells by measuring the production of inositol phosphates. Both peptides stimulated a dose related increase in all three inositol phosphates in myometrium. This may be related to the control of sarcoplasmic Ca++ levels in the myometrium. Oxytocin and vasopressin also stimulated inositol 1-phosphate (IP) production in decidua cells. The hydrolysis of phosphatidylinositol by decidua homogenates exhibited a precursor-product relationship for diacylglycerol and arachidonic acid accumulation. Hence both peptides may mobilise free arachidonic acid, for prostaglandin biosynthesis, from decidua cell phosphoinositides by the sequential action of phospholipase C and diacylglycerol lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号