首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenotypic plasticity and genotype-environment interactions (GEI) play a prominent role in plant morphological diversity and in the potential functional capacities of plant life-history traits. The genetic basis of plasticity and GEI, however, is poorly understood in most organisms. In this report, inflorescence development patterns in Arabidopsis thaliana were examined under different, ecologically relevant photoperiod environments for two recombinant inbred mapping populations (Ler x Col and Cvi x Ler) using a combination of quantitative genetics and quantitative trait locus (QTL) mapping. Plasticity and GEI were regularly observed for the majority of 13 inflorescence traits. These observations can be attributable (at least partly) to variable effects of specific QTL. Pooled across traits, 12/44 (27.3%) and 32/62 (51.6%) of QTL exhibited significant QTL x environment interactions in the Ler x Col and Cvi x Ler lines, respectively. These interactions were attributable to changes in magnitude of effect of QTL more often than to changes in rank order (sign) of effect. Multiple QTL x environment interactions (in Cvi x Ler) clustered in two genomic regions on chromosomes 1 and 5, indicating a disproportionate contribution of these regions to the phenotypic patterns observed. High-resolution mapping will be necessary to distinguish between the alternative explanations of pleiotropy and tight linkage among multiple genes.  相似文献   

2.
The pattern of development of the inflorescence is an important characteristic in ornamental plants, where the economic value is in the flower. The genetic determinism of inflorescence architecture is poorly understood, especially in woody perennial plants with long life cycles. Our objective was to study the genetic determinism of this characteristic in rose. The genetic architectures of 10 traits associated with the developmental timing and architecture of the inflorescence, and with flower production were investigated in a F 1 diploid garden rose population, based on intensive measurements of phenological and morphological traits in a field. There were substantial genetic variations in inflorescence development traits, with broad-sense heritabilities ranging from 0.82 to 0.93. Genotypic correlations were significant for most (87%) pairs of traits, suggesting either pleiotropy or tight linkage among loci. However, non-significant and low correlations between some pairs of traits revealed two independent developmental pathways controlling inflorescence architecture: (1) the production of inflorescence nodes increased the number of branches and the production of flowers; (2) internode elongation connected with frequent branching increased the number of branches and the production of flowers. QTL mapping identified six common QTL regions (cQTL) for inflorescence developmental traits. A QTL for flowering time and many inflorescence traits were mapped to the same cQTL. Several candidate genes that are known to control inflorescence developmental traits and gibberellin signaling in Arabidopsis thaliana were mapped in rose. Rose orthologues of FLOWERING LOCUS T (RoFT), TERMINAL FLOWER 1 (RoKSN), SPINDLY (RoSPINDLY), DELLA (RoDELLA), and SLEEPY (RoSLEEPY) co-localized with cQTL for relevant traits. This is the first report on the genetic basis of complex inflorescence developmental traits in rose.  相似文献   

3.
Association mapping focused on 36 genes involved in branch development was used to identify candidate genes for variation in shoot branching in Arabidopsis thaliana. The associations between four branching traits and moderate-frequency haplogroups at the studied genes were tested in a panel of 96 accessions from a restricted geographic range in Central Europe. Using a mixed-model association-mapping method, we identified three loci--MORE AXILLARY GROWTH 2 (MAX2), MORE AXILLARY GROWTH 3 (MAX3), and SUPERSHOOT 1 (SPS1)--that were significantly associated with branching variation. On the basis of a more extensive examination of the MAX2 and MAX3 genomic regions, we find that linkage disequilibrium in these regions decays within approximately 10 kb and trait associations localize to the candidate genes in these regions. When the significant associations are compared to relevant quantitative trait loci (QTL) from previous Ler x Col and Cvi x Ler recombinant inbred line (RIL) mapping studies, no additive QTL overlapping these candidate genes are observed, although epistatic QTL for branching, including one that spans the SPS1, are found. These results suggest that epistasis is prevalent in determining branching variation in A. thaliana and may need to be considered in linkage disequilibrium mapping studies of genetically diverse accessions.  相似文献   

4.
Phenotypic plasticity is an important response mechanism of plants to environmental heterogeneity. Here, we explored the genetic basis of plastic responses of Arabidopsis thaliana to water deficit by experimentally mapping quantitative trait loci (QTL) in two recombinant inbred populations (Cvi x Ler and Ler x Col). We detected genetic variation and significant genotype-by-environment interactions for many traits related to water use. We also mapped 26 QTL, including six for carbon isotope composition (delta13C). Negative genetic correlations between fruit length and fruit production as well as between flowering time and branch production were corroborated by QTL colocalization, suggesting these correlations are due to pleiotropy or physical linkage. Water-limited plants were more apically dominant with greater root:shoot ratios and higher delta13C (higher water-use efficiency) when compared to well-watered plants. Many of the QTL effects for these traits interacted significantly with the irrigation treatment, suggesting that the observed phenotypic plasticity is genetically based. We specifically searched for epistatic (QTL-QTL) interactions using a two-dimensional genome scan, which allowed us to detect epistasis regardless of additive genetic effects. We found several significant QTL-QTL interactions including three that exhibited environmental dependence. These results provide preliminary evidence for proposed genetic mechanisms underlying phenotypic plasticity.  相似文献   

5.
Juenger T  Purugganan M  Mackay TF 《Genetics》2000,156(3):1379-1392
A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these same traits in the Landsberg erecta x Columbia recombinant inbred line population. There was significant genetic variation for all traits in both the sample of naturally occurring ecotypes and in the Ler x Col recombinant inbred line population. In addition, broad-sense genetic correlations among the traits were positive and high. A composite interval mapping (CIM) analysis detected 18 significant QTL affecting at least one floral character. Eleven QTL were associated with several floral traits, supporting either pleiotropy or tight linkage as major determinants of flower morphological integration. We propose several candidate genes that may underlie these QTL on the basis of positional information and functional arguments. Genome-wide QTL mapping is a promising tool for the discovery of candidate genes controlling morphological development, the detection of novel phenotypic effects for known genes, and in generating a more complete understanding of the genetic basis of floral development.  相似文献   

6.
Biofortification of foods, achieved by increasing the concentrations of minerals such as iron (Fe) and zinc (Zn), is a goal of plant scientists. Understanding genes that influence seed mineral concentration in a model plant such as Arabidopsis could help in the development of nutritionally enhanced crop cultivars. Quantitative trait locus (QTL) mapping for seed concentrations of calcium (Ca), copper (Cu), Fe, potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and Zn was performed using two recombinant inbred line (RIL) populations, Columbia (Col) x Landsberg erecta (Ler) and Cape Verde Islands (Cvi) x Ler, grown on multiple occasions. QTL mapping was also performed using data from silique hulls and the ratio of seed:hull mineral concentration of the Cvi x Ler population. Over 100 QTLs that affected seed mineral concentration were identified. Twenty-nine seed QTLs were found in more than one experiment, and several QTLs were found for both seed and hull mineral traits. A number of candidate genes affecting seed mineral concentration are discussed. These results indicate that A. thaliana is a suitable and convenient model for discovery of genes that affect seed mineral concentration. Some strong QTLs had no obvious candidate genes, offering the possibility of identifying unknown genes that affect mineral uptake and translocation to seeds.  相似文献   

7.
Lewis MS  Cheverud JM  Pikaard CS 《Genetics》2004,167(2):931-939
Nucleolar dominance describes the silencing of one parent's ribosomal RNA (rRNA) genes in a genetic hybrid. In Arabidopsis thaliana, rRNA genes are clustered in two nucleolus organizer regions, NOR2 and NOR4. In F(8) recombinant inbreds (RI) of the A. thaliana ecotypes Ler and Cvi, lines that display strong nucleolar dominance inherited a specific combination of NORs, Cvi NOR4 and Ler NOR2. These lines express almost all rRNA from Cvi NOR4. The reciprocal NOR genotype, Ler NOR4/Cvi NOR2, allowed for expression of rRNA genes from both NORs. Collectively, these data reveal that neither Cvi rRNA genes nor NOR4 are always dominant. Furthermore, strong nucleolar dominance does not occur in every RI line inheriting Cvi NOR4 and Ler NOR2, indicating stochastic effects or the involvement of other genes segregating in the RI mapping population. A partial explanation is provided by an unlinked locus, identified by QTL analysis, that displays an epistatic interaction with the NORs and affects the relative expression of NOR4 vs. NOR2. Collectively, the data indicate that nucleolar dominance is a complex trait in which NORs, rather than individual rRNA genes, are the likely units of regulation.  相似文献   

8.
In Arabidopsis recombinant inbred line (RIL) populations are widely used for quantitative trait locus (QTL) analyses. However, mapping analyses with this type of population can be limited because of the masking effects of major QTL and epistatic interactions of multiple QTL. An alternative type of immortal experimental population commonly used in plant species are sets of introgression lines. Here we introduce the development of a genomewide coverage near-isogenic line (NIL) population of Arabidopsis thaliana, by introgressing genomic regions from the Cape Verde Islands (Cvi) accession into the Landsberg erecta (Ler) genetic background. We have empirically compared the QTL mapping power of this new population with an already existing RIL population derived from the same parents. For that, we analyzed and mapped QTL affecting six developmental traits with different heritability. Overall, in the NIL population smaller-effect QTL than in the RIL population could be detected although the localization resolution was lower. Furthermore, we estimated the effect of population size and of the number of replicates on the detection power of QTL affecting the developmental traits. In general, population size is more important than the number of replicates to increase the mapping power of RILs, whereas for NILs several replicates are absolutely required. These analyses are expected to facilitate experimental design for QTL mapping using these two common types of segregating populations.  相似文献   

9.
In compatible interactions between plants and viruses that result in systemic infection, symptom development is a major phenotypic trait. However, host determinants governing this trait are mostly unknown, and the mechanisms underlying it are still poorly understood. In a previous study on the Arabidopsis thaliana-Plum pox virus (PPV) pathosystem, we showed a large degree of variation in symptom development among susceptible accessions. In particular, Cvi-1 (Cape Verde islands) accumulates viral particules but remains symptomless, Col-0 (Columbia) sometimes shows weak symptoms compared with Ler (Landsberg erecta), which always shows severe symptoms. Genetic analyses of Col x Ler and Cvi x Ler F2 and recombinant inbred line (RIL) populations suggested that symptom development as well as viral accumulation traits are polygenic and quantitative. Three of the symptom quantitative trait loci (QTL) identified could be confirmed in near-isogenic lines, including PSI1 (PPV symptom induction 1), which was identified on the distal part of chromosome 1 in both RIL populations. With respect to viral accumulation, several factors have been detected and, interestingly, in the Col x Ler population, two out of three viral accumulation QTL colocalized with loci controlling symptom development, although correlation analysis showed weak linearity between symptom severity and virus accumulation. In addition, in the Cvi x Ler RIL population, a digenic recessive determinant controlling PPV infection was identified.  相似文献   

10.
Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination.  相似文献   

11.
The previous molecular identification of a flowering time QTL segregating in the Arabidopsis L er x Cvi cross, demonstrated that natural allelic variation at the blue light photoreceptor CRY2 gene affects flowering time (El-Assal et al., 2001). In addition, previous works on the same cross have mapped several QTL affecting other unrelated life history traits in the CRY2 genomic region. In the present report, we have used a set of Arabidopsis L er transgenic plants carrying four different functional CRY2 transgenes for phenotypic analyses, with the aim of exploring the extent of pleiotropy of CRY2 allelic variation. It is concluded that previously identified QTL affecting fruit length, ovule number per fruit, and percentage of unfertilized ovules are caused by this same Ler/Cvi CRY2 allelic variation. In addition, dose effects of the CRY2-L er allele are detected for fruit length. A seed weight QTL at the map position of CRY2 could not be confirmed and also no effect on seed dormancy was observed. Thus, it is shown that transgenic plants carrying different alleles can be a useful tool to attribute QTL for different complex traits to a specific locus, even when the relationship among the traits has not been previously suggested.  相似文献   

12.
Multiple environmental cues regulate the transition to flowering. In natural environments, plants perceive seasonal progression by changes in day length and growth temperature, and plant density is monitored by changes in the light quality reflected from neighbouring vegetation. To understand the seasonal and plant-density dependence associated with natural allelic variation in flowering time, we conducted a quantitative trait loci (QTL) mapping study in Ler x Cvi, Bay x Sha and Ler x No-0 recombinant inbred line (RIL) populations of Arabidopsis thaliana. Days and total leaf number to bolting were examined under low and high plant density (200 or 1600 plants m(-2)) in autumn-winter and spring seasons. We found between 4 and 10 QTLs associated with seasonal and density variations in each RIL population. For Ler x Cvi and Bay x Sha RIL populations, a major proportion of QTLs showed seasonal and density interaction (up to 63%) and four QTLs were common to all environments (21%). Only three QTLs showed seasonal or density dependency. By aligning the linkage maps onto a common physical map, we detected at least one QTL at chromosome 2 and two QTLs at chromosome 5 that overlap between the three RIL populations, suggesting that these QTLs play a crucial role in the adaptive control of flowering time.  相似文献   

13.
14.
Yang G  Xing Y  Li S  Ding J  Yue B  Deng K  Li Y  Zhu Y 《Hereditas》2006,143(2006):236-245
Plant height and tiller number are two important characters related to yield in rice (Oriza sativa L.). Zhenshan97 x Minghui63 recombinant inbred lines were employed to dissect the genetic basis of development of plant height and tiller number using conditional and unconditional composite interval mapping approaches. The traits were normally distributed with transgressive segregation in both directions. Increasingly negative correlations were observed between tiller number and plant height at five consecutive growth stages. A total of 23 and 24 QTL were identified for tiller number and plant height, respectively. More QTL were detected by conditional mapping than by conventional mapping. Different QTL/genes apparently controlled the traits at different developmental stages. Three genomic regions were identified as putative co-located QTL, which showed opposite additive effects on tiller number and plant height. Furthermore, in the period reaching maximum tiller number, the expression of QTL for tiller number was active, whereas that of QTL for plant height was inactive. These facts provided a possible genetic explanation for the negative correlations between the traits. The research demonstrates conditional mapping to be superior to conventional mapping for this type of research. Implications of the results for hybrid rice improvement are discussed.  相似文献   

15.
We have analysed the circadian rhythm of Arabidopsis thaliana leaf movements in the accession Cvi from the Cape Verde Islands, and in the commonly used laboratory strains Columbia (Col) and Landsberg (erecta) (Ler), which originated in Northern Europe. The parental lines have similar rhythmic periods, but the progeny of crosses among them reveal extensive variation for this trait. An analysis of 48 Ler/Cvi recombinant inbred lines (RILs) and a further 30 Ler/Col RILs allowed us to locate four putative quantitative trait loci (QTLs) that control the period of the circadian clock. Near-isogenic lines (NILs) that contain a QTL in a small, defined chromo- somal region allowed us to confirm the phenotypic effect and to map the positions of three period QTLs, designated ESPRESSO, NON TROPPO and RALENTANDO. Quantitative trait loci at the locations of RALENTANDO and of a fourth QTL, ANDANTE, were identified in both Ler/Cvi and Ler/Col RIL populations. Some QTLs for circadian period are closely linked to loci that control flowering time, including FLC. We show that flc mutations shorten the circadian period such that the known allelic variation in the MADS-box gene FLC can account for the ANDANTE QTL. The QTLs ESPRESSO and RALENTANDO identify new genes that regulate the Arabidopsis circadian system in nature, one of which may be the flowering-time gene GIGANTEA.  相似文献   

16.
Juenger TE  Sen S  Stowe KA  Simms EL 《Genetica》2005,123(1-2):87-105
A major goal of evolutionary biology is to understand the genetic architecture of the complex quantitative traits that may lead to adaptations in natural populations. Of particular relevance is the evaluation of the frequency and magnitude of epistasis (gene–gene and gene–environment interaction) as it plays a controversial role in models of adaptation within and among populations. Here, we explore the genetic basis of flowering time in Arabidopsis thaliana using a series of quantitative trait loci (QTL) mapping experiments with two recombinant inbred line (RIL) mapping populations [Columbia (Col) x Landsberg erecta (Ler), Ler x Cape Verde Islands (Cvi)]. We focus on the response of RILs to a series of environmental conditions including drought stress, leaf damage, and apical damage. These data were explicitly evaluated for the presence of epistasis using Bayesian based multiple-QTL genome scans. Overall, we mapped fourteen QTL affecting flowering time. We detected two significant QTL–QTL interactions and several QTL–environment interactions for flowering time in the Ler x Cvi population. QTL–environment interactions were due to environmentally induced changes in the magnitude of QTL effects and their interactions across environments – we did not detect antagonistic pleiotropy. We found no evidence for QTL interactions in the Ler x Col population. We evaluate these results in the context of several other studies of flowering time in Arabidopsis thaliana and adaptive evolution in natural populations.  相似文献   

17.
The natural variation in leaf and plant longevity in Arabidopsis thaliana was analysed in a set of 45 ecotypes and 155 recombinant inbred lines derived from a Cape Verde Islands (Cvi) x Landsberg erecta (Ler) cross. Post-bolting longevity was inversely related to time to flowering and rosette leaf number in the set of 45 ecotypes, with Cvi having the longest and Ler the shortest post-bolting longevity. The recombinant inbred line population was tested under low or high soil nutrient levels (LN or HN, respectively). Three quantitative trait loci (QTL), one in chromosome 3 and two in chromosomes 1 and 5, were associated with longevity of the 6th rosette leaf under LN and HN, respectively. Four QTL for post-bolting longevity were found in chromosomes 1, 3, 4, and 5, and two in chromosomes 1 and 5 under LN and HN, respectively. An epistatic interaction affecting post-bolting longevity under LN, but not HN, was detected. Ler and Cvi carry a mix of increasing and decreasing alleles for the QTL affecting longevity of the 6th leaf and post-bolting longevity. Longevity of the 6th rosette leaf was associated with different QTL than post-bolting longevity, and it was affected by different QTL depending on nutrient availability. By contrast, the major QTL affecting post-bolting longevity exerted significant effects irrespective of soil nutrient availability.  相似文献   

18.
Maize tassel inflorescence architecture is relevant to efficient production of F1 seed and yield performance of F1 hybrids. The objectives of this study were to identify genetic relationships among seven measured tassel inflorescence architecture traits and six calculated traits in a maize backcross population derived from two lines with differing tassel architectures, and identify Quantitative Trait Loci (QTL) involved in the inheritance of those tassel inflorescence architecture traits. A Principal Component (PC) analysis was performed to examine relationships among correlated traits. Traits with high loadings for PC1 were branch number and branch number density, for PC2 were spikelet density on central spike and primary branch, and for PC3 were lengths of tassel and central spike. We detected 45 QTL for individual architecture traits and eight QTL for the three PCs. For control of inflorescence architecture, important QTL were found in bins 7.02 and 9.02. The interval phi034—ramosa1 (ral) in bin 7.02 was associated with six individual architecture trait QTL and explained the largest amount of phenotypic variation (17.3%) for PC1. Interval bnlg344–phi027 in bin 9.02 explained the largest amount of phenotypic variation (14.6%) for PC2. Inflorescence architecture QTL were detected in regions with candidate genes fasciated ear2, thick tassel dwarf1, and ral. However, the vast majority of QTL mapped to regions without known candidate genes, indicating positional cloning efforts will be necessary to identify these genes.  相似文献   

19.
20.
Storage of excess nitrate in the vacuole and its subsequent remobilization is an important aspect of a plant's nitrogen economy, but the genes controlling the underlying processes have not all been identified and characterized. Cape Verdi Island (Cvi)/Landsberg erecta (Ler) and Columbia (Col)/Landsberg erecta recombinant inbred line (RIL) populations of Arabidopsis thaliana were used to identify quantitative trait loci (QTL) controlling natural variation in nitrate concentrations. One major and two minor QTLs were found for the Cvi/Ler population and one minor QTL for the Col/Ler RIL. These were designated NA1 to NA4. The major Cvi/Ler QTL (NA3) was located at the bottom of chromosome 5. No interaction among the QTLs was found by two-way ANOVA. By comparing in silico the locations of the QTLs with a physical map of the Arabidopsis genome, candidate genes for each QTL were identified. Several of these were anion channels of the AtCLC family. One of these, AtCLC-c, coincided with NA3 and its role was investigated using a mutant with a transposon insertion in AtCLC-c. Mutant plants homozygous for the insertion (designated clcc-1) had less than 5% of AtCLC-c mRNA compared with wild-type (WT) shoots. They also had significantly lower nitrate concentrations when grown at a range of external nitrate concentrations. The concentrations of chloride, malate, and citrate were also affected in the mutant. In wild-type plants, expression of AtCLC-c was down-regulated in the presence of nitrate, but ammonium had a much smaller effect while chloride and sulphate did not affect expression. These and published results suggest that multiple genes affect nitrate concentrations in plants and that AtCLC-c and other members of the AtCLC gene family play some role in this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号