首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors in modulating signalling pathways downstream of other types of receptor is well established, but the mechanisms underlying this modulation are not known. Recent data suggest that calcium-dependent signalling downstream of ITAM-coupled receptors regulates the amplitude and functional outcomes of cytokine and TLR signalling. In this Opinion article, I describe a model whereby the intensity of ITAM-dependent signalling and the balance of calcium signals relative to other ITAM-mediated signalling pathways determines whether cellular responses to cytokines and TLR ligands are increased or inhibited. This model describes mechanisms that explain how ITAM-coupled receptors regulate heterologous signalling pathways.  相似文献   

2.
ZAP-70 is a protein tyrosine kinase thought to play a critical role in T-cell receptor (TCR) signal transduction. During T-cell activation, ZAP-70 binds to a conserved signalling motif known as the immune receptor tyrosine activating motif (ITAM) and becomes tyrosine phosphorylated. To determine whether binding of ZAP-70 to the phosphorylated ITAM was able to activate its kinase activity, we measured the kinase activity of ZAP-70 both when it was bound and when it was unbound to phosphorylated TCR subunits. The ability of ZAP-70 to phosphorylate itself, but not exogenous substrates, was enhanced when it was bound to the tyrosine-phosphorylated TCR zeta and eta chains or to a construct that contained duplicated epsilon ITAMs. No enhanced ZAP-70 autophosphorylation was noted when it was bound to tyrosine-phosphorylated CD3 gamma or epsilon. In addition, autophosphorylation of ZAP-70 when bound to zeta or eta resulted in the generation of multiple distinct ZAP-70 phosphorylated tyrosine residues which had the capacity to bind the SH2 domains of fyn, lck, GAP, and abl. As the effect was noted only when ZAP-70 was bound to TCR subunits containing multiple ITAMs, we propose that one of the roles of the tandem ITAMs is to facilitate the autophosphorylation of ZAP-70. Tyrosine-phosphorylated ZAP-70 then mediates downstream signalling by recruiting SH2 domain-containing signalling proteins.  相似文献   

3.
Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.  相似文献   

4.
Members of the immunoglobulin superfamily (IgSF) include a group of innate immune receptors located in the leukocyte receptor complex (LRC) and other small clusters such as the TREM/NKp44 cluster. These receptors are characterised by the presence of immunoglobulin domains, a stalk, a transmembrane domain, and a cytoplasmic region containing either an immunoreceptor tyrosine-based inhibitory motif (ITIM) or are linked to an adapter molecule with an activation motif (ITAM) for downstream signalling. We have isolated two carp cDNA sequences encoding receptors in which the extracellular Ig domain structurally resembles the novel V-type Ig domain of NKp44. This is supported by a homology model. The cytoplasmic regions contain either an ITAM (Cyca-NILT1) or ITIMs (Cyca-NILT2). The tissue expression of these receptors is nearly identical, with the highest expression in the immunological organs. Peripheral blood leucocytes showed no detectable expression, but upon in vitro culture expressed NILT1, the activating receptor, and not the inhibitory NILT2 receptor. Southern blot analysis indicated that the NILT1 and NILT2 sequences belong to a multigene family. Analysis of the NILT Ig domain-encoding sequences amplified from both genomic DNA and cDNA revealed extensive haplotypic and allelic polymorphism. Database mining of the zebrafish genome identified several homologs on Chromosome 1, which also contains a cluster of class I major histocompatibility genes. This constellation is reminiscent of the TREM/NKp44 gene cluster and the HLA complex located on human Chromosome 6. The carp NILT genes form a unique cluster of innate immune receptors, which are highly polymorphic, and characterised by a new Ig structural subfamily and are distinct from the novel immune-type receptors (Nitrs) found in other fish species.  相似文献   

5.
In recent years, the elucidation of the structures of many signalling molecules has allowed new insights into the molecular mechanisms that govern signal transduction events. In the field of cytokine signalling, the solved structures of cytokine/receptor complexes and of key components involved in signal transduction such as STAT factors or the tyrosine phosphatase SHP2 have broadened our understanding of the molecular basis of the signalling events and provided key information for the rational design of therapeutic approaches to modulate or block cytokine signal transduction. Unfortunately, no structural data on the intracellular parts of cytokine receptors are available. The exact molecular mechanism underlying one of the first steps in signal transduction, namely the recruitment of signalling components to the cytoplasmic parts of cytokine receptors, remains elusive. Here we investigated possible mechanisms underlying the different potency of the STAT3-activating motifs of gp130 after IL-6 stimulation. Our data indicate that the extent of STAT3 activation by the different receptor motifs is not influenced by structural features such as contacts between the two gp130 chains. In addition, the proximity of the negatively regulating motif around tyrosine Y759 to the different STAT3-recruiting motifs does not seem to be responsible for their differential capacity to activate STAT3. However, the potency of a specific motif to activate STAT3 directly reflects the affinity for the binding of STAT3 to this motif.  相似文献   

6.
The first 10 residues within the Src homology domain (SH)-4 domain of the Src family kinase Fyn are required for binding to the immune receptor tyrosine-based activation motif (ITAM) of T cell receptor (TCR) subunits. Recently, mutation of glycine 2, cysteine 3, and lysines 7 and 9 was shown to block binding of Fyn to TCR zeta chain ITAMs, prompting the designation of these residues as an ITAM recognition motif (Gauen, L.K.T., M.E. Linder, and A.S. Shaw. 1996. J. Cell Biol. 133:1007-1015). Here we show that these residues do not mediate direct interactions with TCR ITAMs, but rather are required for efficient myristoylation and palmitoylation of Fyn. Specifically, coexpression of a K7,9A-Fyn mutant with N-myristoyltransferase restored myristoylation, membrane binding, and association with the cytoplasmic tail of TCR zeta fused to CD8. Conversely, treatment of cells with 2-hydroxymyristate, a myristoylation inhibitor, blocked association of wild-type Fyn with zeta. The Fyn NH2 terminus was necessary but not sufficient for interaction with zeta and both Fyn kinase and SH2 domains were required, directing phosphorylation of zeta ITAM tyrosines and binding to zeta ITAM phosphotyrosines. Fyn/zeta interaction was sensitive to octylglucoside and filipin, agents that disrupt membrane rafts. Moreover, a plasma membrane bound, farnesylated Fyn construct, G2A,C3S-FynKRas, was not enriched in the detergent insoluble fraction and did not associate with zeta. We conclude that the Fyn SH4 domain provides the signals for fatty acylation and specific plasma membrane localization, stabilizing the interactions between the Fyn SH2 domain and phosphotyrosines in TCR zeta chain ITAMs.  相似文献   

7.
FcgammaRIIB are low-affinity receptors for IgG that contain an immunoreceptor tyrosine-based inhibition motif (ITIM) and inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. When coaggregated with ITAM-bearing receptors, FcgammaRIIB become tyrosyl-phosphorylated and recruit the Src homology 2 (SH2) domain-containing inositol 5'-phosphatases SHIP1 and SHIP2, which mediate inhibition. The FcgammaRIIB ITIM was proposed to be necessary and sufficient for recruiting SHIP1/2. We show here that a second tyrosine-containing motif in the intracytoplasmic domain of FcgammaRIIB is required for SHIP1/2 to be coprecipitated with the receptor. This motif functions as a docking site for the SH2 domain-containing adapters Grb2 and Grap. These adapters interact via their C-terminal SH3 domain with SHIP1/2 to form a stable receptor-phosphatase-adapter trimolecular complex. Both Grb2 and Grap are required for an optimal coprecipitation of SHIP with FcgammaRIIB, but one adapter is sufficient for the phosphatase to coprecipitate in a detectable manner with the receptors. In addition to facilitating the recruitment of SHIPs, the second tyrosine-based motif may confer upon FcgammaRIIB the properties of scaffold proteins capable of altering the composition and stability of the signaling complexes generated following receptor engagement.  相似文献   

8.
Recruitment of signaling molecules to the cytoplasmic domains of the CD3 subunits of the T-cell receptor (TCR) is crucial for early T-cell activation. These transient associations either do or do not require tyrosine phosphorylation of CD3 immune tyrosine activation motifs (ITAMs). Here we show that the non-ITAM-requiring adaptor protein Nck forms a complex with an atypical PxxDY motif of the CD3ε tail, which encompasses Tyr166 within the ITAM and a TCR endocytosis signal. As suggested by the structure of the complex, we find that Nck binding inhibits phosphorylation of the CD3ε ITAM by Fyn and Lck kinases in vitro. Moreover, the CD3ε-Nck interaction downregulates TCR surface expression upon physiological stimulation in mouse primary lymph node cells. This indicates that Nck performs an important regulatory function in T lymphocytes by inhibiting ITAM phosphorylation and/or removing cell surface TCR via CD3ε interaction.  相似文献   

9.
We have found that insulin-like growth factor I (IGF-I) can protect fibroblasts from apoptosis induced by UV-B light. Antiapoptotic signalling by the IGF-I receptor depended on receptor kinase activity, as cells overexpressing kinase-defective receptor mutants could not be protected by IGF-I. Overexpression of a kinase-defective receptor which contained a mutation in the ATP binding loop functioned as a dominant negative and sensitized cells to apoptosis. The antiapoptotic capacity of the IGF-I receptor was not shared by other growth factors tested, including epidermal growth factor (EGF) and thrombin, although the cells expressed functional receptors for all the agonists. However, EGF was antiapoptotic for cells overexpressing the EGF receptor, and expression of activated pp60v-src also was protective. There was no correlation between protection from apoptosis and activation of mitogen-activated protein kinase, p38/HOG1, or p70S6 kinase. On the other hand, protection by any of the tyrosine kinases against UV-induced apoptosis was blocked by wortmannin, implying a role for phosphatidylinositol 3-kinase (PI3 kinase). To test this, we transiently expressed constitutively active or kinase-dead PI3 kinase and found that overexpression of activated phosphatidylinositol 3-kinase (PI3 kinase) was sufficient to provide protection against apoptosis. Because Akt/PKB is believed to be a downstream effector for PI3 kinase, we also examined the role of this serine/threonine protein kinase in antiapoptotic signalling. We found that membrane-targeted Akt was sufficient to protect against apoptosis but that kinase-dead Akt was not. We conclude that the endogenous IGF-I receptor has a specific antiapoptotic signalling capacity, that overexpression of other tyrosine kinases can allow them also to be antiapoptotic, and that activation of PI3 kinase and Akt is sufficient for antiapoptotic signalling.  相似文献   

10.
ITAM-mediated tonic signalling through pre-BCR and BCR complexes   总被引:1,自引:0,他引:1  
Studies carried out over the past few years provide strong support for the idea that Ig alpha-Ig beta-containing complexes such as the pre-B-cell receptor and the B-cell receptor can signal independently of ligand engagement, and this has been termed tonic signalling. In this Review, I discuss recent literature that is relevant to the potential mechanisms by which tonic signals are initiated and regulated, and discuss views on how tonic and ligand-dependent (aggregation-mediated) signalling differ. These mechanisms are relevant to the possibility that tonic signals generated through immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins that are expressed by oncogenic viruses induce transformation in non-haematopoietic cells.  相似文献   

11.
The immunoreceptor tyrosine-based activation motif (ITAM) plays a central role in transmembrane signal transduction in hematopoietic cells by mediating responses leading to proliferation and differentiation. An initial signaling event following activation of the B cell antigen receptor is phosphorylation of the CD79a (Ig-alpha) ITAM by Lyn, a Src family protein-tyrosine kinase. To elucidate the structural basis for recognition between the ITAM substrate and activated Lyn kinase, the structure of an ITAM-derived peptide bound to Lyn was determined using exchange-transferred nuclear Overhauser NMR spectroscopy. The bound substrate structure has an irregular helix-like character. Docking based on the NMR data into the active site of the closely related Lck kinase strongly favors ITAM binding in an orientation similar to binding of cyclic AMP-dependent protein kinase rather than that of insulin receptor tyrosine kinase. The model of the complex provides a rationale for conserved ITAM residues, substrate specificity, and suggests that substrate binds only the active conformation of the Src family tyrosine kinase, unlike the ATP cofactor, which can bind the inactive form.  相似文献   

12.
Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism.  相似文献   

13.
The discoidin domain receptors, DDR1 and DDR2 are cell surface receptor tyrosine kinases that are activated by triple-helical collagen. While normal DDR signalling regulates fundamental cellular processes, aberrant DDR signalling is associated with several human diseases. We previously identified GVMGFO (O is hydroxyproline) as a major DDR2 binding site in collagens I-III, and located two additional DDR2 binding sites in collagen II. Here we extend these studies to the homologous DDR1 and the identification of DDR binding sites on collagen III. Using sets of overlapping triple-helical peptides, the Collagen II and Collagen III Toolkits, we located several DDR2 binding sites on both collagens. The interaction of DDR1 with Toolkit peptides was more restricted, with DDR1 mainly binding to peptides containing the GVMGFO motif. Triple-helical peptides containing the GVMGFO motif induced DDR1 transmembrane signalling, and DDR1 binding and receptor activation occurred with the same amino acid requirements as previously defined for DDR2. While both DDRs exhibit the same specificity for binding the GVMGFO motif, which is present only in fibrillar collagens, the two receptors display distinct preferences for certain non-fibrillar collagens, with the basement membrane collagen IV being exclusively recognised by DDR1. Based on our recent crystal structure of a DDR2-collagen complex, we designed mutations to identify the molecular determinants for DDR1 binding to collagen IV. By replacing five amino acids in DDR2 with the corresponding DDR1 residues we were able to create a DDR2 construct that could function as a collagen IV receptor.  相似文献   

14.
Collagen activates mammalian platelets through a complex of the immunoglobulin (Ig) receptor GPVI and the Fc receptor γ-chain, which has an immunoreceptor tyrosine-based activation motif (ITAM). Cross-linking of GPVI mediates activation through the sequential activation of Src and Syk family kinases and activation of PLCγ2. Nucleated thrombocytes in fish are activated by collagen but lack an ortholog of GPVI. In this study we show that collagen activates trout thrombocytes in whole blood and under flow conditions through a Src kinase driven pathway. We identify the Ig receptor G6f-like as a collagen receptor and demonstrate in a cell line assay that it signals through its cytoplasmic ITAM. Using a morpholino for in vivo knock-down of G6f-like levels in zebrafish, we observed a marked delay or absence of occlusion of the venous and arterial systems in response to laser injury. Thus, G6f-like is a physiologically relevant collagen receptor in fish thrombocytes which signals through the same ITAM-based signalling pathway as mammalian GPVI, providing a novel example of convergent evolution.  相似文献   

15.
Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus.  相似文献   

16.
We examined the mechanism by which M-CSF regulates the cytoskeleton and function of the osteoclast, the exclusive bone resorptive cell. We show that binding of M-CSF to its receptor c-Fms generates a signaling complex comprising phosphorylated DAP12, an adaptor containing an immunoreceptor tyrosine-based activation motif (ITAM) and the nonreceptor tyrosine kinase Syk. c-Fms tyrosine 559, the exclusive binding site of c-Src, is necessary for regulation of DAP12/Syk signaling. Deletion of either of these molecules yields osteoclasts that fail to reorganize their cytoskeleton. Retroviral transduction of null precursors with wild-type or mutant DAP12 or Syk reveals that the SH2 domain of Syk and the ITAM tyrosine residues and transmembrane domain of DAP12 mediate M-CSF signaling. Our data provide genetic and biochemical evidence that uncovers an epistatic signaling pathway linking the receptor tyrosine kinase c-Fms to the immune adaptor DAP12 and the cytoskeleton.  相似文献   

17.
Semaphorins and their receptors have diverse functions in axon guidance, organogenesis, vascularization and/or angiogenesis, oncogenesis and regulation of immune responses. The primary receptors for semaphorins are members of the plexin family. In particular, plexin-A1, together with ligand-binding neuropilins, transduces repulsive axon guidance signals for soluble class III semaphorins, whereas plexin-A1 has multiple functions in chick cardiogenesis as a receptor for the transmembrane semaphorin, Sema6D, independent of neuropilins. Additionally, plexin-A1 has been implicated in dendritic cell function in the immune system. However, the role of plexin-A1 in vivo, and the mechanisms underlying its pleiotropic functions, remain unclear. Here, we generated plexin-A1-deficient (plexin-A1(-/-)) mice and identified its important roles, not only in immune responses, but also in bone homeostasis. Furthermore, we show that plexin-A1 associates with the triggering receptor expressed on myeloid cells-2 (Trem-2), linking semaphorin-signalling to the immuno-receptor tyrosine-based activation motif (ITAM)-bearing adaptor protein, DAP12. These findings reveal an unexpected role for plexin-A1 and present a novel signalling mechanism for exerting the pleiotropic functions of semaphorins.  相似文献   

18.
The regulation of T-cell-mediated immune responses depends on the phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) on T-cell receptors. Although many details of the signaling cascades are well understood, the initial mechanism and regulation of ITAM phosphorylation remains unknown. We used molecular dynamics simulations to study the influence of different compositions of lipid bilayers on the membrane association of the CD3ϵ cytoplasmic tails of the T-cell receptors. Our results show that binding of CD3ϵ to membranes is modulated by both the presence of negatively charged lipids and the lipid order of the membrane. Free-energy calculations reveal that the protein-membrane interaction is favored by the presence of nearby basic residues and the ITAM tyrosines. Phosphorylation minimizes membrane association, rendering the ITAM motif more accessible to binding partners. In systems mimicking biological membranes, the CD3ϵ chain localization is modulated by different facilitator lipids (e.g., gangliosides or phosphoinositols), revealing a plausible regulatory effect on activation through the regulation of lipid composition in cell membranes.  相似文献   

19.
Vav family proteins are guanine nucleotide exchange factors for the Rho/Rac family of small GTP-binding proteins. In addition, they have domains that mediate protein-protein interactions, including one Src homology 2 (SH2) and two Src homology 3 (SH3) domains. Vav1, Vav2, and Vav3 play a crucial role in the regulation of phospholipase C gamma (PLC gamma) isoforms by immuno-tyrosine-based activation motif (ITAM)-coupled receptors, including the T- and B-cell antigen receptors. We have reported in platelets, however, that Vav1 and Vav2 are not required for activation of PLC gamma 2 in response to stimulation of the ITAM-coupled collagen receptor glycoprotein VI (GPVI). Here we report that Vav3 is tyrosinephosphorylated upon activation of GPVI but that Vav3-deficient platelets also exhibit a normal response upon activation of the ITAM receptor. In sharp contrast, platelets deficient in both Vav1 and Vav3 show a marked inhibition of aggregation and spreading upon activation of GPVI, which is associated with a reduction in tyrosine phosphorylation of PLC gamma 2. The phenotype of Vav1/2/3 triple-deficient platelets is similar to that of Vav1/3 double-deficient cells. These results demonstrate that Vav3 and Vav1 play crucial but redundant roles in the activation of PLC gamma 2 by GPVI. This is the first time that absolute redundancy between two protein isoforms has been observed with respect to the regulation of PLC gamma 2 in platelets.  相似文献   

20.
DAP12 is a 12 kDa transmembrane protein recently recognized as a key signal transduction receptor element in Natural Killer (NK) cells. It is a disulfide-linked homodimer that non-covalently associates with several activating receptors expressed on NK cells. Activation signals initiated through DAP12 are predicted to play strategic roles in triggering NK cell cytotoxicity responses toward certain tumor cells and virally infected cells. The cytoplasmic domain of DAP12 contains an Immunoreceptor Tyrosine-based Activation Motif (ITAM). Phosphorylation of ITAM tyrosines mediates associations with protein tyrosine kinases, which is a resonant feature of signalling through these motifs in T and B cell antigen receptors. In addition, its expression in other tissues, including dendritic cells and monocytes, suggests that DAP12 transduces ITAM-mediated activation signals for an extended array of receptors in those cells as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号