首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
2.
Phenotypic revertants were isolated from simian virus 40-transformed cells in order to examine the relationship between simian virus 40 T-antigen expression and G1 arrest of growth. Revertant clones with increased adherence were selected from cultures of SVT2, a simian virus 40-transformed BALB/c mouse cell line, and screened to find arrestable revertant clones which inhibited DNA synthesis when crowded. The clones selected from untreated SVT2 were unstable and showed little or no inhibition of DNA synthesis when crowded. Stable revertants were found after treatment of SVT2 with Colcemid to increase ploidy. The stable revertants all lost most transformed growth properties tested, including tumorigenicity, but only a few showed the same degree of inhibition of DNA synthesis at high cell density as BALB/3T3. All revertant clones expressed T antigen at low cell density. Three revertants showed coordinate inhibition of DNA synthesis and apparent loss of T antigen at high cell density. We suggest that changes in gene dosage rather than mutations caused the altered properties of the new revertants and that continued DNA synthesis in confluent cultures may be the transformed phenotype that requires the least simian virus 40 T antigen.  相似文献   

3.
The survival of UV-irradiated simian virus 40 (SV40) on UV-irradiated monkey kidney CV-1P cells at 33° was increased over survival on unirradiated cells. During this process — called induced-virus reactivation — the progeny virus yielded by UV-irradiated cells had a much higher mutation frequency than did the progeny from unirradiated cells. Mutation rates were quantified by using phenotypic reversion towards wild-type growth of an early (tsA 58) or a late (tsB 201) temperature-sensitive SV40 mutant. Analysis of SV40 revertant genomes indicated that no detectable deletions or additions were resposible for the reversion process.These results suggest that enzymes from UV-irradiated cells are able to replicate UV-irradiated DNA by an error-prone mode of DNA repair. Induced virus reactivation and error-prone replication are probably one of the expressions of SOS functions in mammalian cells.  相似文献   

4.
Summary Simian virus 40 (SV40) was used to probe ultraviolet light (UV) — induced mutation in mammalian cells. Viral mutations were scored as reversions of early and late temperature-sensitive (ts) mutants to the wild-type (WT) phenotype. When virus was exposed to moderate or high UV doses, WT revertants were obtained at a frequency related to the square of the dose from two early (tsA) and one late (tsBC) mutant grown at the restrictive temperature. The reversions generated in the progeny of UV-irradiated early mutants presumably arose before the onset of viral DNA replication because, at the non-permissive temperature, tsA mutants are unable to express the functions responsible for the initiation of viral DNA synthesis. Moreover, the early mutant tsA209 underwent similar levels of induced reversion at the permissive and restrictive temperatures, suggesting that the pre-replicative mutational pathway might predominate for moderately and heavily irradiated virus, even under conditions where DNA synthesis can be initiated. The analysis of bursts from revertant plaques produced at the restrictive temperature was consistent with this interpretation. Although the mechanism of pre-replicative mutagenesis is not known, it is likely to be mediated by cellular activities owing to the low genetic complexity of the virus.  相似文献   

5.
The large T antigen of simian virus 40 (SV40) is a multifunctional protein that is essential in both the virus lytic cycle and the oncogenic transformation of cells by SV40. To investigate the role of the numerous biochemical and physiological activities of T antigen in the lytic and transformation processes, we have studied DNA replication-deficient, transformation-competent large T-antigen mutants. Here we describe the genetic and biochemical analyses of two such mutants, C2/SV40 and C11/SV40. The mutants were isolated by rescuing the integrated SV40 DNA from C2 and C11 cells (CV-1 cell lines transformed with UV-irradiated SV40). The mutant viral early regions were cloned into the plasmid vector pK1 to generate pC2 and pC11. The mutations that are responsible for the deficiency in viral DNA replication were localized by marker rescue. Subsequent DNA sequencing revealed point mutations that predict amino acid substitutions in the carboxyl third of the protein in both mutants. The pC2 mutation predicts the change of Lys----Arg at amino acid 516. pC11 has two mutations, one predicting a change of Pro----Ser at residue 522, and another predicting a Pro----Arg change at amino acid 549. The two C11 mutations were separated from each other to form two distinct viral genomes in pC11A and pC11B. pC2, pC11, pC11A, and pC11B are able to transform both primary and established rodent cell cultures. The C11 and C11A T antigens are defective in ATPase activity, suggesting that wild-type levels of ATPase activity are not necessary for the oncogenic transformation of cells by T antigen.  相似文献   

6.
The induction of phenotypic wild-type revertants in the progeny of an unirradiated or UV-irradiated temperature-sensitive late mutant of simian virus 40 was studied after low multiplicity passages in normal or UV-irradiated confluent monkey kidney cells. The production of wild-type revertants in the progeny of undamaged tsBC245 was followed by infecting the cells at distinct times after irradiation of the cells. Mutation frequencies reached a maximum when infection was delayed for 3--4 days after irradiation of the host cells, and declined gradually thereafter. Virus grown in unirradiated cells did not show such an alteration in mutation frequency. The temporarily higher mutation frequency of virus in UV-pretreated cells is due to a transient mutator activity operating in these cells rather than to an increased number of replications performed in UV-irradiated cells. A similar time course was found for the reactivation of UV-damaged SV40. This might suggest that reactivation and mutagenesis are manifestations of the same process. The yield of mutants due to irradiation of the virus alone was enhanced when infection was delayed for some days after the cells reached confluency; UV pretreatment of the host cells did not enhance the level of mutation obtained by UV irradiation of the virus.  相似文献   

7.
Base substitution of the ori region of simian virus 40 leads to plaque morphology mutants with markedly decreased DNA replication. Second-site mutations within the simian virus 40 T antigen gene suppress the plaque phenotype and replication defect of base-substituted ori mutants. Two second-site mutations have been mapped to a small segment of the T antigen gene, just beyond the distal splice junction. DNA sequence analysis revealed a single missense change in this segment of the T antigen gene of each of these second-site revertants, leading to a change in codon 157 in one case and codon 166 in the other. The mutant T antigens displayed relaxed specificity for the ori signal, i.e., they can function with several variously modified ori sequences, including those with small nucleotide deletions or insertions that are inactive for replication when coupled with wild-type T antigen. Thus a region of T antigen has been identified that appears to be intimately involved in vivo in binding to the ori sequence to initiate viral DNA replication.  相似文献   

8.
Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate.  相似文献   

9.
The effect of base pair substitutions on the function of the polyoma virus origin of DNA replication was studied. The mutations were all C-G to T-A transitions, induced by bisulfite treatment of recombinant DNA molecules. The mutagenesis was directed to short single-stranded gaps in duplex DNA, or to loops in heteroduplex molecules. Modification of a 34 base pair sequence of dyad symmetry led to cis-acting inhibition of viral DNA synthesis, ranging from slight defects to total inactivation. One of the mutants was temperature sensitive. Mutants with base changes in an adjacent DNA segment, including an 18 base pair long purine-pyrimidine tract, had similar, but less severe, deficiences. In contrast to the effect of mutations in the homologous region of the simian virus 40 genome, there was no strict relationship between mutation of the putative large T-antigen-binding base sequence GPuGGC and defective viral DNA synthesis.  相似文献   

10.
A 60 base-pair region of a simian virus 40 DNA fragment was mutagenized to determine base-pairs that are critical for the fragment to bend. The site-directed mutagenesis saturated this region with all possible single base-pair substitutions. The mobility of each mutated fragment was measured by polyacrylamide electrophoresis at 4 degrees C and at 65 degrees C to assess the degree of bend. Four conclusions can be drawn. First, interruptions within the A tracts and changes in the phasing of the A tracts alter the degree of bend. Second, G tracts phased at a half-helical turn from an A tract are additive to the bend. Third, guanine residues in a nearest-neighbor contact with the A tracts modify the bend. Fourth, some mutations that do not obviously relate to the A tracts also alter the DNA bend and suggest clearly that base steps other than ApA are involved in sequence-directed DNA bends.  相似文献   

11.
Temperature-insensitive transformants that contained simian virus 40 sequences at only one or a few sites in the rat chromosome and that were induced by a temperature-sensitive A gene mutant of simian virus 40 were used to select flat revertants (revertants that had lost the transformed phenotype). The isolation was performed at the nonpermissive temperature so as not to select against temperature-sensitive transformants. Nonetheless, all of the revertants examined had lost their ability to express the T-antigen at both temperatures, and all contained rearrangements of the integrated simian virus 40 sequences. These results are most compatible with the hypothesis that the T-antigen of simian virus 40 is required for the maintenance of the transformed state even in temperature-insensitive cell lines.  相似文献   

12.
Genetic Analysis of Bacteriophage P22 Lysozyme Structure   总被引:1,自引:0,他引:1       下载免费PDF全文
D. Rennell  A. R. Poteete 《Genetics》1989,123(3):431-440
The suppression patterns of 11 phage P22 mutants bearing different amber mutations in the gene encoding lysozyme (19) were determined on six different amber suppressor strains. Of the 60 resulting single amino acid substitutions, 18 resulted in defects in lysozyme activity at 30 degrees; an additional seven were defective at 40 degrees. Revertants were isolated on the "missuppressing" hosts following UV mutagenesis; they were screened to distinguish primary- from second-site revertants. It was found that second-site revertants were recovered with greater efficiency if the UV-irradiated phage stocks were passaged through an intermediate host in liquid culture rather than plated directly on the nonpermissive host. Eleven second-site revertants (isolated as suppressors of five deleterious substitutions) were sequenced: four were intragenic, five extragenic; three of the extragenic revertants were found to have alterations near and upstream from gene 19, in gene 13. Lysozyme genes from the intragenic revertant phages were introduced into unmutagenized P22, and found to confer the revertant plating phenotype.  相似文献   

13.
The cyc1-9 ochre (UAA) mutant and the cyc1-179 amber (UAG) mutant of the yeast Saccharomyces cerevisiae were reverted with X-rays and -particles. The amino acid sequence changes of iso-1-cytochromes c from 36 of the intragenic revertants were determined by amino acid analysis and peptide mapping, aided by partial amino acid sequencing of 4 revertants. In addition, the DNA segments encompassing 3 unusual mutations with complex changes were cloned and sequenced. This study and previous studies of 16 other revertants of cyc1-9 and cyc1-179 revealed that ionizing radiation primarily induces single base-pair substitutions; 47 of the 52 revertants arose by transversions and transitions without any apparent preference. However, the A·T→T·A substitution at the first base pair for the cyc1-179 UAG codon, leading to the normal protein, was not detected, nor was it found previously in 32 revertants of cycl-179 obtained spontaneously or induced with various other mutagens; apparently, there is a prohibition of certain base-pair substitutions at certain sites in DNA. In addition, 5 of the 52 revertants arose by multiple changes within a short region of 11 base pairs. These consisted of the deletion of 6 base pairs, the substitution of 3 base pairs, and 3 different kinds of substitutions of two base pairs. Compared to other mutagens previously tested with the cyc1 system, ionizing radiation produces the most random types of base-pair substitutions.  相似文献   

14.
A simian virus 40-based shuttle vector was used to characterize UV-induced mutations generated in mammalian cells. The small size and placement of the mutagenesis marker (the supF suppressor tRNA gene from Escherichia coli) within the vector substantially reduced the frequency of spontaneous mutations normally observed after transfection of mammalian cells with plasmid DNA; hence, UV-induced mutations were easily identified above the spontaneous background. UV-induced mutations characterized by DNA sequencing were found primarily to be base substitutions; about 56% of these were single-base changes, and 17% were tandem double-base changes. About 24% of the UV-induced mutants carried multiple mutations clustered within the 160-base-pair region sequenced. The majority (61%) of base changes were the G . C----A . T transitions; the other transition (A . T----G . C) and all four transversions occurred at about equal frequencies. Hot spots for UV mutagenesis did not correspond to hot spots for UV-induced photoproduct formation (determined by a DNA synthesis arrest assay); in particular, sites of TT dimers were underrepresented among the UV-induced mutations. These observations suggest to us that the DNA polymerase(s) responsible for mutation induction exhibits a localized loss of fidelity in DNA synthesis on UV-damaged templates such that it synthesizes past UV photoproducts, preferentially inserting adenine, and sometimes misincorporates bases at undamaged sites nearby.  相似文献   

15.
J Clarke  W Herr 《Journal of virology》1987,61(11):3536-3542
We show that duplication of any one of three separate simian virus 40 enhancer elements, A, B, or C, can compensate for loss of function in the remaining two. Simian virus 40 revertants containing point mutations within the A and C (dpm16) or B and C (dpm26) enhancer elements contain tandem duplications that include the remaining wild-type element. These simple tandem duplications can create enhancers 25-fold more active than that of the parental mutant. These revertants can arise by illegitimate recombination between heterologous viral genomes. This was demonstrated by the recombinants resulting from a mixed infection with the viruses dpm16 and dpm2, which contain mutations in the A and C elements and the B element, respectively.  相似文献   

16.
The survival of UV-irradiated simian virus 40 (SV40) is higher in UV-irradiated than in non-irradiated monolayers of BSC-1 monkey cells. A similar reactivation is found when cells are infected with SV40-DNA, suggesting that reactivation acts on viral DNA. The enhanced reactivation of UV-irradiated SV40 and SV40-DNA is optimal when infection is delayed for 2–3 days after irradiation of the cells.UV-pretreated cells infected with SV40-DNA produce more virus than infected control cells; the time curve of this process is similar to that found for enhanced virus reactivation and suggests that facilitated virus production in UV-irradiated cells and enhanced virus reactivation might be manifestations of the same process.If the non-irradiated SV40 thermosensitive mutant BC245 is propagated in UV-irradiated BSC-1 cells the rate of back mutation to phenotypically wild-type is increased compared with that of the control. This suggests that an inducible error-prone system is functional in these cells. When the UV-irradiated tsBC245 is propagated in non-irradiated cells the reversion frequency is greatly enhanced, which suggests that either the introduction of UV-irradiated SV40-DNA is sufficient to induce an error-generating system, or that a constitutive error-prone mechanism is operative on this DNA.  相似文献   

17.
18.
We have used a simian virus 40 (SV40)-based shuttle vector, pZ189, to analyze the sequence specificity of spontaneous point mutations that arise after transfection of this vector into monkey cells. The majority of the mutants which we studied had multiple base substitutions (mostly G-C----A-T transitions and G-C----T-A transversions) within the 160-bp region sequenced. Almost all of the mutations occurred in the right-hand G-C bp of one of the two following sequences, 5'-TC-3':3'-AG-5' or 5'-CC-3':3'-GG-5'. We postulate that these mutations result from DNA replication infidelity occurring during repair of the transfected DNA which has been damaged by cellular nucleases. The sequence specificity of the mutations suggests an effect of the following nucleotide on misincorporation wherein A (or less frequently T) is preferentially misincorporated opposite C when the next nucleotide inserted is A (or less frequently G). Our results support the utility of the shuttle vector as a model in studies on gene transfer and document the extreme plasticity of DNA transfected into mammalian cells.  相似文献   

19.
20.
K Maruyama  T Hiwasa    K I Oda 《Journal of virology》1981,37(3):1028-1043
Eight clones of flat revertants were isolated by negative selection from simian virus 40 (SV40)-transformed mouse and rat cell lines in which two and six viral genome equivalents per cell were integrated, respectively. These revertants showed either a normal cell phenotype or a phenotype intermediate between normal and transformed cells as to cellular morphology and saturation density and were unable to grow in soft agar medium. One revertant derived from SV40-transformed mouse cells was T antigen positive, whereas the other seven revertants were T antigen negative. SV40 could be rescued only from the T-antigen-positive revertant by fusion with permissive monkey cells. The susceptibility of the revertants to retransformation by wild-type SV40 was variable among these revertants. T-antigen-negative revertants from SV40-transformed mouse cells were retransformed at a frequency of 3 to 10 times higher than their grandparental untransformed cells. In contrast, T-antigen-negative revertants from SV40-transformed rat cells could not be retransformed. The arrangement of viral genomes was analyzed by digestion of cellular DNA with restriction enzymes of different specificity, followed by detection of DNA fragments containing a viral sequence and rat cells were serially arranged within the length of about 30 kilobases, with at least two intervening cellular sequences. A head-to-tail tandem array of unit length viral genomes was present in at least one insertion site in the transformed rat cells. All of the revertants had undergone a deletion(s), and only a part of the viral genome was retained in T-antigen-negative revertants. A relatively high frequency of reversion in the transformed rat cells suggests that reversion occurs by homologous recombination between the integrated viral genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号