首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Methanogens colonised on reticulated polyurethane foam BSP rapidly lost biomass when exposed to hydrodynamic stress. The loss was independent of the porosity of the BSP matrix. These findings indicate the binding forces between methanogen and particle surface is weak and may impose a limit on the potential for process intensification in fixed or fluidised bed methane digesters.  相似文献   

2.
【背景】开发生物甲烷资源是减轻化石燃料供求紧张的有效措施,而秸秆类原料的预处理及甲烷生产方法需要不断创新,从而进一步满足可持续发展。厌氧真菌与甲烷菌共培养能够通过假根侵入及纤维降解酶双重预处理秸秆并生产甲烷,但目前全世界被报道的骆驼胃肠道来源的厌氧真菌分离培养物仅有1株。【目的】从新疆准噶尔双峰驼瘤胃内容物中分离出新型厌氧真菌和甲烷菌共培养物,研究其在降解秸秆并联合生产生物甲烷方面的应用潜力。【方法】采用Hungate滚管纯化技术将从骆驼胃肠道中分离的厌氧真菌和甲烷菌共培养,对其进行形态学及分子学鉴定,随后厌氧发酵5种底物(稻秸、芦苇、构树叶、苜蓿秆和草木樨),研究产甲烷量、降解效果及主要代谢产物等方面的特性。【结果】筛选到的共培养物中的厌氧真菌为Oontomyces sp. CR1,甲烷菌为Methanobrevibacter sp. CR1。其在降解稻秸时表现出最高的木聚糖酶酶活力(21.64 IU/mL)及甲烷产量(143.39 mL/g-DM),甲烷生产特性较分离自其他动物宿主的厌氧真菌共培养物更优。【结论】共培养厌氧真菌与甲烷菌菌株CR1是一种新型高效降解菌株资源,其在利用木质纤维素生物质生产生物甲烷方面具有良好的应用前景。  相似文献   

3.
Methane dynamics across wetland plant species   总被引:5,自引:0,他引:5  
We examined patterns of methane flux, plant biomass, and microbial methanogenic populations in nine wetland plant species. Methane dynamics varied across plant functional groupings, with patterns distinctive among forbs, clonal dominants, and tussock/clump-forming graminoids. Carex stricta and Scirpus atrovirens showed the highest emissions (31.7 and 20.6 mg CH4-C m−2 h−1), followed by other tussock- or clump-forming graminoids that averaged 11.0 mg CH4-C m−2 h−1 (Scirpus cyperinus, Glyceria striata, and Juncus effusus). The clonal dominants (Phalaris arundinacea and Typha angustifolia) had the lowest methane emissions (1.3 and 3.4 mg CH4-C m−2 h−1) of all seven graminoid species, and the forbs (Mimulus ringens and Verbena hastata) emitted no detectable methane flux from their leaves. In general, methane emissions decreased with greater plant biomass. Terminal restriction fragment analysis (T-RFLP) of archaeal 16S rRNA revealed that the structure of the soil methanogen communities isolated from plant rhizospheres had no effect on methane flux. The relative proportions of the different terminal fragments were not correlated with either methane emissions or plant biomass. Methanogen populations from J. effusus soils were dominated by acetoclastic archaea of the Methanosarcinaceae and Methanosaetaceae families, while all other graminoid soils were colonized primarily by hydrogenotrophic archaea of the Methanobacteriaceae family. The results indicate that plant functional groups and plant biomass are useful in predicting methane flux differences across plant species, while soil methanogen community structure showed no distinguishable patterns.  相似文献   

4.
The ability of hydrogen diffusion to account for the rates of methane production in microbial aggregates was studied in a defined coculture consisting of a sulfate reducer grown as a syntrophic hydrogen producer in the absence of sulfate and a methanogen. The hydrogen uptake kinetics of the methanogen were determined using the infinite dilution technique. The maximum hydrogen uptake velocity was 7.1 nmol/min/μg protein and the half saturation constant for hydrogen uptake was 386 nmol/liter. A threshold of 28 nmol/liter below which no further hydrogen consumption occurred was observed. The reconstituted co-culture was shown to produce methane at rates similar to mixed culture enrichments grown on lactate. The diffusion model demonstrated that for the particular system studied, the rates of hydrogen diffusion could account for the overall rate of methane production.  相似文献   

5.
在青藏高原地区的低温条件下通过滚管技术分离了一类耐低温产甲烷菌,并利用气相色谱法测定了产气活性。结果表明:这类甲烷菌最低产气温度为8℃,甲烷气体产生的高峰期在厌氧培养的第7 d;pH值与盐浓度对其产气活性均有影响,最佳条件为pH值7.0、盐度4%。  相似文献   

6.
Termites harbor symbiotic microorganisms in their gut which emit methane. The phylogeny of the termite methanogens was inferred without cultivation based on nucleotide sequences of PCR-amplified 16S ribosomal RNA genes. Seven methanogen sequences from four termite species were newly isolated, and together with those previously published, these sequences were phylogenetically compared. The termite methanogen sequences were divided into three clusters. Two clusters of sequences, derived from the gut DNA of so-called higher termites, were related to methanogens in the orders Methanosarcinales or Methanomicrobiales. All of the sequences in the case of lower termites were closely related to the genus Methanobrevibacter. However, most of the termite symbionts were found to be distinct from known methanogens. They are not dispersed among diverse methanogen species, but rather formed unique lineages in the phylogenetic trees.  相似文献   

7.
Despite the fact that rice paddy fields (RPFs) are contributing 10 to 25% of global methane emissions, the organisms responsible for methane production in RPFs have remained uncultivated and thus uncharacterized. Here we report the isolation of a methanogen (strain SANAE) belonging to an abundant and ubiquitous group of methanogens called rice cluster I (RC-I) previously identified as an ecologically important microbial component via culture-independent analyses. To enrich the RC-I methanogens from rice paddy samples, we attempted to mimic the in situ conditions of RC-I on the basis of the idea that methanogens in such ecosystems should thrive by receiving low concentrations of substrate (H(2)) continuously provided by heterotrophic H(2)-producing bacteria. For this purpose, we developed a coculture method using an indirect substrate (propionate) in defined medium and a propionate-oxidizing, H(2)-producing syntroph, Syntrophobacter fumaroxidans, as the H(2) supplier. By doing so, we significantly enriched the RC-I methanogens and eventually obtained a methanogen within the RC-I group in pure culture. This is the first report on the isolation of a methanogen within RC-I.  相似文献   

8.

Background

Methane (CH4) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO2). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed.

Methodology/Principal Findings

The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H2) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species.

Conclusions/Significance

The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to worldwide efforts to mitigate ruminant methane emissions and reduce production of anthropogenic greenhouse gases.  相似文献   

9.

Background  

Methanogens that populate the gastrointestinal tract of livestock ruminants contribute significantly to methane emissions from the agriculture industry. There is a great need to analyze archaeal microbiomes from a broad range of host species in order to establish causal relationships between the structure of methanogen communities and their potential for methane emission. In this report, we present an investigation of methanogenic archaeal populations in the foregut of alpacas.  相似文献   

10.
Methanogen Communities in a Drained Bog: Effect of Ash Fertilization   总被引:1,自引:0,他引:1  
Forestry practises such has drainage have been shown to decrease emissions of the greenhouse gas methane (CH4) from peatlands. The aim of the study was to examine the methanogen populations in a drained bog in northern Finland, and to assess the possible effect of ash fertilization on potential methane production and methanogen communities. Peat samples were collected from control and ash fertilized (15,000 kg/ha) plots 5 years after ash application, and potential CH4 production was measured. The methanogen community structure was studied by DNA isolation, PCR amplification of the methyl coenzyme-M reductase (mcr) gene, denaturing gradient gel electrophoresis (DGGE), and restriction fragment length polymorphism (RFLP) analysis. The drained peatland showed low potential methane production and methanogen diversity in both control and ash-fertilized plots. Samples from both upper and deeper layers of peat were dominated by three groups of sequences related to Rice cluster-I hydrogenotroph methanogens. Even though pH was marginally greater in the ash-treated site, the occurrence of those sequences was not affected by ash fertilization. Interestingly, a less common group of sequences, related to the Fen cluster, were found only in the fertilized plots. The study confirmed the depth related change of methanogen populations in peatland.  相似文献   

11.
12.
Reduction in greenhouse gas emission from beef production is essential to the survival of the beef industry from environmental and social-economic perspectives. There are different systems available to measure methane from animals, but they are expensive, not easily accessible, and not suitable for large-scale methane measurements on the farm. Therefore exploring indicator traits, which are easy to measure, cost-effective, and suitable for large-scale measurement, are recommended. The objectives of this study were to examine the diversity of fecal methanogen profile among efficient and inefficient beef heifers on pasture and investigate methanogen profile as a possible proxy to predict methane emission in beef cattle consuming a forage diet. Forty pregnant (1st trimester) heifers previously classified for postweaning residual feed intake adjusted for off-test back fat (RFIfat; 20 high and 20 low) were included in this study. To determine individual pasture grazing intake, heifers were dosed with 1 kg of C32 labeled pellets once per day from Day 0 to Day 12, and fecal samples were collected twice daily from Day 8 to Day 15. Fecal samples from Days 8, 10, and 12 were analyzed for their methanogen profile. Animals were monitored individually for methane and carbon dioxide production using a GreenFeed Emissions Monitoring system. Total methanogen population and methanogenic community diversity of fecal samples were not different (P > 0.1) between low and high RFIfat groups, as measured by quantitative PCR and α- and β-diversity indices. However, both groups had a different methanogen profile; the relative abundance of Methanobrevibacter wolinii and relatives were higher (P < 0.002), while that of Methanosphaera species ISO3-F5 was lower (P < 0.01) in low RFIfat cattle compared to the high RFIfat group. We also demonstrated that fecal methanogen profiles may be a useful proxy in predicting daily methane and carbon dioxide emissions with an adjusted R2 of 0.53 and 0.33, respectively, for low RFIfat heifers and 0.46 and 0.57, respectively, for the high RFIfat group.  相似文献   

13.
Despite the fact that rice paddy fields (RPFs) are contributing 10 to 25% of global methane emissions, the organisms responsible for methane production in RPFs have remained uncultivated and thus uncharacterized. Here we report the isolation of a methanogen (strain SANAE) belonging to an abundant and ubiquitous group of methanogens called rice cluster I (RC-I) previously identified as an ecologically important microbial component via culture-independent analyses. To enrich the RC-I methanogens from rice paddy samples, we attempted to mimic the in situ conditions of RC-I on the basis of the idea that methanogens in such ecosystems should thrive by receiving low concentrations of substrate (H2) continuously provided by heterotrophic H2-producing bacteria. For this purpose, we developed a coculture method using an indirect substrate (propionate) in defined medium and a propionate-oxidizing, H2-producing syntroph, Syntrophobacter fumaroxidans, as the H2 supplier. By doing so, we significantly enriched the RC-I methanogens and eventually obtained a methanogen within the RC-I group in pure culture. This is the first report on the isolation of a methanogen within RC-I.  相似文献   

14.
The effects of a live strain of Saccharomyces cerevisiae on hydrogen utilization and acetate and methane production by two hydrogenotrophic ruminal microorganisms, an acetogenic bacterial strain and an archaea methanogen, were investigated. The addition of yeast cells enhanced by more than fivefold the hydrogenotrophic metabolism of the acetogenic strain and its acetate production. In the absence of yeasts, and in a coculture of the acetogen and the methanogen, hydrogen was principally used for methane synthesis, but the presence of live yeast cells stimulated the utilization of hydrogen by the acetogenic strain and enhanced acetogenesis.  相似文献   

15.
Gas hydrates deposited in subseafloor sediments are considered to primarily consist of biogenic methane. However, little evidence for the occurrence of living methanogens in subseafloor sediments has been provided. This study investigated viable methanogen diversity, population, physiology and potential activity in hydrate-bearing sediments (1–307 m below the seafloor) from the eastern Nankai Trough. Radiotracer experiments, the quantification of coenzyme F430 and molecular sequencing analysis indicated the occurrence of potential methanogenic activity and living methanogens in the sediments and the predominance of hydrogenotrophic methanogens followed by methylotrophic methanogens. Ten isolates and nine representative culture clones of hydrogenotrophic, methylotrophic and acetoclastic methanogens were obtained from the batch incubation of sediments and accounted for 0.5–76% of the total methanogenic sequences directly recovered from each sediment. The hydrogenotrophic methanogen isolates of Methanocalculus and Methanoculleus that dominated the sediment methanogen communities produced methane at temperatures from 4 to 55 °C, with an abrupt decline in the methane production rate at temperatures above 40 °C, which is consistent with the depth profiles of potential methanogenic activity in the Nankai Trough sediments in this and previous studies. Our results reveal the previously overlooked phylogenetic and metabolic diversity of living methanogens, including methylotrophic methanogenesis.Subject terms: Biogeochemistry, Biodiversity, Environmental microbiology  相似文献   

16.
During the anaerobic biodegradation of effluent from a dimethyl terephthalate (DMT) manufacturing plant, reduction in chemical oxygen demand (COD) degradation and biogas formation was observed after the waste-water concentration exceeded 25% of added feed COD. This condition reverted back to normal after 25–30 days when the DMT waste-water concentration in the feed was brought down to a non-toxic level. However, the above effects were observed only after the concentration of DMT waste-water reached more than 75% of added feed COD when biomass support particles (BSP) were augmented to the system. In the BSP system, a biomass concentration of up to 7000 mg/l was retained and the sludge retention time increased to > 200 days compared to 2200 mg/l and 8–10 days, respectively, in the system without BSP (control). Formaldehyde in the waste-water was found to be responsible for the observed toxicity. The BSP system was found to resist formaldehyde toxicity of up to 375 mg/l as against 125 mg/l in the control system. Moreover, the BSP system recovered from the toxicity much faster (15 days) than the control (25–30 days). The advantages of the BSP system in anaerobic treatment of DMT waste-water are discussed. Correspondence to: C. Ramakrishna  相似文献   

17.
目的:在开放条件下以甲烷为底物富集高聚β-羟基丁酸酯(PHB)含量的甲烷氧化菌群,获得能够利用低成本碳源高产PHB的菌种。方法:采用丰盛-饥饿模式间歇供料,以甲烷为底物,好氧开放式培养甲烷氧化混合菌群,利用苏丹黑染色法动态检测丰盛和饥饿阶段胞内PHB含量的变化,以此为基础考察丰盛-饥饿期比例对富集高PHB含量的甲烷氧化菌群的影响。结果:丰盛-饥饿期比例为1∶3时,微生物PHB含量从17.7%增加到35.5%,且开放培养过程中菌群结构稳定。结论:通过丰盛-饥饿模式间歇供料开放式培养所得的高PHB含量的稳定的甲烷氧化菌群,具有工业生产PHB的应用价值。  相似文献   

18.
Abstract The metabolism of methanol by acidogenic bacteria ( Butyribacterium methylotrophicum, Sporomusa ovata and Acetobacterium woodii ) was studied in pure culture and in defined mixed cultures with sulfate-reducing bacteria ( Desulfovibrio vulgaris ) or methanogenic bacteria ( Methanobrevibacter arboriphilus strain AZ). In the mixed cultures, less acids (acetate and/or butyrate) were formed per unit methanol converted than in pure cultures. In these mixed cultures, a significant production of sulfide or methane was observed despite the inability of the sulfate reducer and the methanogen to use methanol as an energy substrate. These results are explained in terms of interspecies hydrogen transfer between the acidogens (converting part of the methanol to 1 CO2 and 3 H2) and the Desulfovibrio or Methanobrevibacter species. The bioenergetic aspects of this process and its ecological implications are discussed.  相似文献   

19.
Anaerobic digestion of wastewater from a dimethyl terephthalate plant was studied in continuously stirred tank reactors with plastic net biomass support particles (BSP) at a level of 20% (v/v). The experimental results showed that the BSP system could treat the wastewater at a hydraulic retention time as low as 1.5 d, organic loading as high as 20 kg COD/m3/d and at acidic feed pH as low as 4.5 with 95% COD reduction and biogas production of about 8l/l/d, while the control system without support particles could not treat the wastewater above a 5-d hydraulic retention time, 5 kg COD/m3/d organic loading and a feed pH of 6.0. Thus, augmentation of BSP upgraded the performance of the conventional suspended growth system to an equivalent level to advanced reactors.  相似文献   

20.
Aims: Methane emissions from ruminants are a significant contributor to global greenhouse gas production. The aim of this study was to examine the effect of diet on microbial communities in the rumen of steers. Methods and Results: The effects of dietary alteration (50 : 50 vs 90 : 10 concentrate–forage ratio, and inclusion of soya oil) on methanogenic and bacterial communities in the rumen of steers were examined using molecular fingerprinting techniques (T‐RFLP and automated ribosomal intergenic spacer analysis) and real‐time PCR. Bacterial diversity was greatly affected by diet, whereas methanogen diversity was not. However, methanogen abundance was significantly reduced (P = 0·009) in high concentrate–forage diets and in the presence of soya oil (6%). In a parallel study, reduced methane emissions were observed with these diets. Conclusions: The greater effect of dietary alteration on bacterial community in the rumen compared with the methanogen community may reflect the impact of substrate availability on the rumen bacterial community. This resulted in altered rumen volatile fatty acid profiles and had a downstream effect on methanogen abundance, but not diversity. Significance and Impact of the Study: Understanding how rumen microbial communities contribute to methane production and how these microbes are influenced by diet is essential for the rational design of methane mitigation strategies from livestock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号