首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Riov J  Yang SF 《Plant physiology》1982,70(1):136-141
Exogenous ethylene stimulated ethylene production in intact citrus (Citrus sinensis L. Osbeck cv. “Washington Navel”) leaves and leaf discs following a 24-hour exposure. Studies with leaf discs showed that ethylene production decreased when ethylene was removed by aeration. The extent of stimulation was dependent upon the concentration of exogenous ethylene (1-10 microliters per liter). Silver ion blocked the autocatalytic effect of ethylene at concentrations of 0.5 millimolar and lower, but increased ethylene production at higher concentrations. The stimulating effect of ethylene resulted from the enhancement of both 1-aminocyclopropane-1-carboxylic acid (ACC) formation and the conversion of ACC to ethylene. Whereas autocatalysis was evident following 24 hours incubation, autoinhibition of wound- and mannitol-induced ethylene production was observed during the first 24-hour incubation. Ethylene treatment during this period resulted in a marked decrease in ACC levels and ethylene production rates. Furthermore, in leaf discs treated for 24 hours with ethylene, ethylene production rates increased greatly during the first 2 hours after removal of exogenous ethylene by aeration. This increase was eliminated if the discs were transferred to propylene instead of air, indicating that the autocatalytic effect of ethylene is counteracted by its autoinhibitory effect. It is suggested that autocatalysis involves increased synthesis of ACC synthase and the enzyme responsible for the conversion of ACC to ethylene, whereas autoinhibition involves suppression of the activity of these two enzymes.  相似文献   

2.
The influence of chromium concentration on ethylene production in bean plants ( Phaseolus vulgaris L. cv. Contender) was investigated. A Cr ion-induced inhibition of ethylene synthesis from endogenous 1-aminocyclopropane-1-carboxylic acid (ACC) was observed within both leaf discs floated on 2 m M CrO2−4 or Cr3+ and leaf discs from plants cultured in nutrient solutions containing 10, 20 or 40 μ M CrO2−4. However, Cr ions supplied either to plants with the nutrient solution or to discs with the incubation medium rather increased the conversion of exogenous ACC to ethylene. Primary leaves of plants exposed to CrO2−4-containing nutrient solutions showed a statistically insignificant decrease of ACC-synthase activity. In the trifoliolate leaves of plants exposed to 10 μ M CrO2−4, in which a significant decrease of ethylene production from endogenous ACC was observed, a substantial increase of ACC synthase was found. These results indicate that Cr ion-induced inhibition of ethylene production is not due to a breakdown of membrane integrity, which is necessary for ethylene forming enzyme activity, but caused by metabolic alterations leading to decreased ACC availability. Chromium ions may act by inhibiting ACC synthase activity or by diverting a metabolic step prior to the ACC synthase catalyzed reaction.  相似文献   

3.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

4.
Bufler G 《Plant physiology》1984,75(1):192-195
Apples (Malus sylvestris Mill, cv Golden Delicious) were treated before harvest with aminoethoxyvinylglycine (AVG). AVG is presumed to reversibly inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) activity, but not the formation of ACC synthase. AVG treatment effectively blocked initiation of autocatalytic ethylene production and ripening of harvested apples. Exogenous ethylene induced extractable ACC synthase activity and ripening in AVG-treated apples. Removal of exogenous ethylene caused a rapid decline in ACC synthase activity and in CO2 production. The results with ripened, AVG-treated apples indicate (a) a dose-response relationship between ethylene and enhancement of ACC synthase activity with a half-maximal response at approximately 0.8 μl/l ethylene; (b) reversal of ethylene-enhanced ACC synthase activity by CO2; (c) enhancement of ACC synthase activity by the ethylene-activity analog propylene.

Induction of ACC synthase activity, autocatalytic ethylene production, and ripening of preclimacteric apples not treated with AVG were delayed by 6 and 10% CO2, but not by 1.25% CO2. However, each of these CO2 concentrations reduced the rate of increase of ACC synthase activity.

  相似文献   

5.
本文试图从活性氧的角度阐明外源IAA诱导ACC合酶活性的机制.绿豆(Phaseolus radiatus L.)幼苗的乙烯产生及ACC合酶活性从萌发的第5天开始上升,到第10天达到高峰,接着下降.10 μmol/L的外源IAA能明显促进绿豆幼苗乙烯的产生及ACC合酶的活性,同时也促进了超氧阴离子自由基(O(-)/(*)2)、过氧化氢(H2O2)的产生.显示外源IAA诱导的ACC合酶的活性与其诱导的活性氧的产生具有某种相关性.外源O(-)/(*)2处理能明显提高绿豆幼苗的乙烯产生速率及ACC合酶的活性,而外源H2O2无论对乙烯产生或ACC合酶的活性均没有明显的作用.外加O(-)/(*)2的清除剂SOD对绿豆幼苗乙烯的产生及ACC合酶活性的提高有一定的抑制作用,而外源过氧化氢酶却没有明显的作用.为此我们可以得出结论:外源IAA诱导的绿豆幼苗ACC合酶活性的提高可能是由于其诱导的O(-)/(*)2产生的升高引起的,这可能也是高等植物中调控乙烯生物合成的机制之一;而IAA诱导的H2O2产率的升高并不是其诱导ACC合酶活性升高的原因.  相似文献   

6.
Preclimacteric avocado (Persea americana Mill.) fruits produced very little ethylene and had only a trace amount of l-aminocyclopropane-1-carboxylic acid (ACC) and a very low activity of ACC synthase. In contrast, a significant amount of l-(malonylamino)cyclopropane-1-carboxylic acid (MACC) was detected during the preclimacteric stage. In harvested fruits, both ACC synthase activity and the level of ACC increased markedly during the climacteric rise reaching a peak shortly before the climacteric peak. The level of MACC also increased at the climacteric stage. Cycloheximide and cordycepin inhibited the synthesis of ACC synthase in discs excised from preclimacteric fruits. A low but measurable ethylene forming enzyme (EFE) activity was detected during the preclimacteric stage. During ripening, EFE activity increased only at the beginning of the climacteric rise. ACC synthase and EFE activities and the ACC level declined rapidly after the climacteric peak. Application of ACC to attached or detached fruits resulted in increased ethylene production and ripening of the fruits. Exogenous ethylene stimulated EFE activity in intact fruits prior to the increase in ethylene production. The data suggest that conversion of S-adenosylmethionine to ACC is the major factor limiting ethylene production during the preclimacteric stage. ACC synthase is first synthesized during ripening and this leads to the production of ethylene which in turn induces an additional increase in ACC synthase activity. Only when ethylene reaches a certain level does it induce increased EFE activity.  相似文献   

7.
Biggs, M. S., Woodson, W. R. and Handa, A. K. 1988. Biochemical basis of high-temperature inhibition of ethylene biosynthesis in ripening tomato fruits. Physiol. Plant. 72: 572578
Incubation of fruits of tomato ( Lycopersicon esculentum Mill. cv. Rutgers) at 34°C or above resulted in a marked decrease in ripening-associated ethylene production. High temperature inhibition of ethylene biosynthesis was not associated with permanent tissue damage, since ethylene production recovered following transfer of fruits to a permissive temperature. Determination of pericarp enzyme activities involved in ethylene biosynthesis following transfer of fruits from 25°C to 35 or 40°C revealed that 1-aminocyclopropane-l-carboxylic acid (ACC) synthase (EC 4.4.1.14) activity declined rapidly while ethylene forming enzyme (EFE) activity declined slowly. Removal of high temperature stress resulted in more rapid recovery of ACC synthase activity relative to EFE activity. Levels of ACC in pericarp tissue reflected the activity of ACC synthase before, during, and after heat stress. Recovery of ethylene production following transfer of pericarp discs from high to permissive temperature was inhibited in the presence of cycloheximide, indicating the necessity for protein synthesis. Ethylene production by wounded tomato pericarp tissue was not as inhibited by high temperature as ripening-associated ethylene production by whole fruits.  相似文献   

8.
Changes in the 1-aminocyclopropane-1-carboxylate (ACC) synthaseactivity which regulates auxin-induced ethylene production werestudied in etiolated mung bean hypocotyl segments. Increasesboth in ethylene production and ACC synthase activity in tissuetreated with IAA and BA were severely inhibited by cycloheximide(CHI), 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide,actinomycin D and -amanitin. Aminoethoxyvinylglycine (AVG),a potent inhibitor of the ACC synthase reaction, increased theactivity of the enzyme in the tissue 3- to 4-fold. This stimulationalso was severely inhibited by the above inhibitors. Stimulationof the increase in the enzyme content by AVG was partially suppressedby an exogenous supply of ACC or ethylene. Suppression of theincrease in the enzyme took place with 0.3 µl/liter ethylene,and inhibition was increased to 10 µl/liter, which caused65% suppression. Air-flow incubation of the AVG-treated tissue,which greatly decreased the ethylene concentration surroundingthe tissue, further increased the amount of enzyme. Thus, oneeffect of AVG is to decrease the ethylene concentration insidethe tissue. The apparent half life of ACC synthase activity,measured by the administration of CHI, was estimated as about25 min. AVG lengthened the half life of the activity about 2-fold.Feedback repression by ethylene in the biosynthetic pathwayof auxin-induced ethylene is discussed in relation to the effectof AVG. (Received January 22, 1982; Accepted March 26, 1982)  相似文献   

9.
Discs (9 mm in diameter and 2 mm in thickness) sliced from mesocarpof winter squash fruit (Cucurbita maxima Duch.) upon incubationat 24°C produced ethylene at an increasing rate after alag period of 3 h. 1-Aminocydopropane-l-carboxylic acid (ACC)synthase activity also increased at a rapid rate after lag periodof less than 3 h, reaching a peak 14 h after incubation andthen declining sharply. The rise in ACC synthase activity precededa rapid increase in ACC formation and ethylene production. Inductionof ACC synthase by wounding in sliced discs was strongly suppressedby the application of cycloheximide, actinomycin D and cordycepin,suggesting that the rise in ACC synthase activity may resultfrom de novo synthesis of protein. ACC synthase extracted from wounded tissue of winter squashmesocarp required pyridoxal phosphate for its maximum activity.The optimum pH of the reaction was 8.5. Km value for S-adenosylmethioninewas 120 µM. The reaction was markedly inhibited by aminoethoxyvinylglycinewith Ki value being 2.7 µM. (Received March 23, 1983; Accepted May 23, 1983)  相似文献   

10.
Wheat leaves normally produced very little ethylene, but following a water deficit stress which caused a loss of 9% initial fresh weight, ethylene production increased more than 30-fold within 4 hours and declined rapidly thereafter. The changes in ethylene production were paralleled by an increase and subsequent decrease in 1-aminocyclopropanecarboxylic acid (ACC) content. The level of S-adenosylmethionine was unaffected, suggesting that the conversion of S-adenosylmethionine to ACC is a key reaction in the production of water stress-induced ethylene. This view was further supported by the observation that application of ACC to nonstressed leaf tissue caused a 70-fold increase in ethylene production, while aminoethoxyvinylglycine, a known inhibitor of the conversion of S-adenosylmethionine to ACC, inhibited ACC accumulation as well as the surge in ethylene production if the inhibitor was applied prior to the stress treatment. Cycloheximide, an inhibitor of protein synthesis, effectively blocked both ethylene production and ACC formation, suggesting that water stress induces de novo synthesis of ACC synthase, which is the rate-controlling enzyme in the pathway of ethylene biosynthesis.  相似文献   

11.
Y. Liu  N. E. Hoffman  S. F. Yang 《Planta》1985,164(4):565-568
The increase in ethylene formation and in 1-aminocyclopropane-1-carboxylic acid (ACC) content in flavedo tissue of grapefruit (Citrus paradisi Macfad. cv. Ruby Red) in response to excision was markedly inhibited by exogenous ethylene. Ethylene treatment inhibited the synthesis of ACC, but increased the tissue's capability to malonylate ACC to N-malonyl-ACC, resulting in further reduction in the endogenous ACC content. The development of extractable ACC-malonyl-transferase activity in the tissue was markedly promoted by treatment with exogenous ethylene. These results indicate that the autoinhibition of ethylene production in this tissue results not only from suppression of ACC synthesis, but also from promotion of ACC malonylation; both processes reduce the availability of ACC for ethylene synthesis.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethyoxyvinylglycine (2-amino-4-(2-aminoexthoxy)-trans-3-butenoic acid) - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid  相似文献   

12.
The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.  相似文献   

13.
Wang CY  Adams DO 《Plant physiology》1982,69(2):424-427
1-Aminocyclopropane-1-carboxylic acid (ACC) level, ACC synthase activity, and ethylene production in cucumbers (Cucumis sativus L.) remain low while the fruit are held at a temperature which causes chilling injury (2.5°C) and increase rapidly only upon transfer to warmer temperatures. The increase in ACC synthase activity during the warming period is inhibited by cycloheximide but not cordycepin or α-amanitin. Our data indicate that the synthesis of ACC synthase, which results in increased ACC levels and accelerated ethylene production, occurs only upon warming, possibly from a message produced or unmasked during the chilling period. Ethylene production by chilled (2.5°C) cucumbers increased very little upon transfer to 25°C if the fruit were chilled for more than 4 days. The fruit held for 4 days or longer showed a large increase in ACC levels but little ethylene production even in the presence of exogenous ACC. This suggests that the system which converts ACC to ethylene is damaged by prolonged exposure to the chilling temperature. Cucumbers stored at a low but nonchilling temperature (13°C) showed very little change in ACC level, ethylene production, or ACC synthase activity even after transfer to 25°C.  相似文献   

14.
Methyl jasmonate (JA-Me) at 10–3 M completely inhibited Amaranthus caudatus seed germination. Exogenous ethylene could totally reverse this inhibition. The inhibitor of ethylene action, 2,5-norbornadiene (NBD), increased the sensitivity of seeds to JA-Me. Methyl jasmonate inhibited ethylene production and also decreased both 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl ACC (MACC) content. Likewise, ACC oxidase activity in vivo was decreased by jasmonate. Similarly ACC oxidase activity in vitro isolated from seeds incubated in the presence of JA-Me was lower than that isolated from untreated seeds.The inhibitory JA-Me action on seed germination seems to be mainly associated with the inhibition of ethylene biosynthesis. Both inhibition of ACC synthase and ACC oxidase activity and/or synthesis can be involved.  相似文献   

15.
Ethylene biosynthesis in leaf discs of tobacco ( Nicotiana tabacum L. cv. Xanthi), as measured by the conversion of L-[3,4-14C]-methionine to 14C2H4, was markedly inhibited by exogenous ethylene. This inhibition was accompanied by a decrease in total (free + conjugated) content of 1-aminocyclopropane-1-carboxylic acid (ACC), most of which appeared in its conjugated inactive form. The autoinhibitory effect of ethylene was reversible and could be relieved by Ag+. The Ag+-treated leaf discs, with or without ethylene, contained only free ACC at an increased level. The results suggest that in tobacco leaves, the autoinhibition of ethylene production resulted from reduction in the availability of free ACC, through both suppression of ACC formation and increased ACC conjugation.  相似文献   

16.
The influence of light and darkness incubation on in vivo ethylene forming enzyme (EFE) activity in citrus ( Citrus sinensis L. Osbeck cv. Salustiana) mature leaf discs was studied. Leaf discs incubated in light produced higher amounts of ethylene than in darkness. Transfer of discs from light to the dark resulted in a marked inhibition of EFE activity, whereas transfer of discs from the dark to light enhanced ethylene forming activity considerably. Light did not affect 1-aminocyclopropane-l-carboxylie acid (ACC) uptake. Incubation in a CO2-eniiched atmosphere enhanced EFE activity both in light and in darkness, but light stimulation of EFE activity was apparently not affected by CO2. Effects of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, inhibitor of photosynthetic electron flow) and KCN (inhibitor of cytochrome oxidase) were studied. DCMU at 0.2 m M inhibited EFE activity in light, whereas no effect was detected in the dark. On the other hand 1 m M KCN stimulated EFE activity in the light, and no significant effect was observed in the dark. CoCl2 at 1 m M inhibited ACC-dependent ethylene production, suggesting that ethylene production from ACC is mediated by EFE in citrus leaf discs both in light and in the dark. Cycloheximide also inhibited EFE activity in the light and no effects were detected in the dark. Therefore protein synthesis in light (perhaps EFE synthesis) could be required for the light stimulation of the in vivo EFE activity.  相似文献   

17.
Auxin-induced ethylene biosynthesis and its regulatory stepsin etiolated mung bean hypocotyl segments were examined. Theendogenous content of 1-aminocyclopropane- 1-carboxylic acid(ACC), an immediate precursor of ethylene, increased correspondingto the rate of ethylene production. Benzyladenine (BA), whichis a synergistic stimulator of auxin-induced ethylene production,increased the ACC content parallel to the rate of ethylene productionin the presence of IAA, but failed to increase the ACC contentin the absence of IAA while ethylene production was significantlystimulated by BA. Abscisic acid (ABA) inhibited the formationof ACC. The ACC synthase activity in the tissue was increasedby IAA, and the increase was further promoted by the presenceof BA. Cycloheximide severely inhibited the development of auxin-inducedACC synthase. The enzymatic properties of mung bean ACC synthasewere similar to those of the tomato fruit enzyme. Aminoethoxyvinylglycine(AVG) and aminooxyacetic acid, which inhibit the ACC synthasereaction, stimulated the development of ACC synthase. The regulatorymechanisms of the growth regulators are discussed in relationto ACC formation. (Received December 3, 1980; Accepted January 22, 1981)  相似文献   

18.
KNEE  M. 《Journal of experimental botany》1987,38(10):1724-1733
Knee, M. 1987. Development of ethylene biosynthesis in pearfruits at — 1 °C.—J. exp. Bot. 38: 1724–1733. The regulation of ethylene synthesis in pear fruits was investigated.During storage for 60 d at — 1 °C the rate of ethylenesynthesis increased 100-fold but the concentration of 1-aminocyclopropane-l-carboxylicacid (ACC) increased only 2-fold and ACC synthase activity waslow. On transfer to 15 °C after storage at — 1 °Cethylene synthesis increased 10-fold within 10 h but ACC synthaseactivity only increased rapidly after 24 h; the decline in ACClevels during the first 16 h at 15 °C was insufficient tosustain ethylene synthesis. Ethylene synthesis was further investigatedusing discs cut from the mid cortex of pear fruits. Synthesiswas inhibited by aminoethoxyvinylglycine (AVG) and amino-oxyaceticacid at all stages of ripening. The rate of synthesis and ACCsynthase activity increased rapidly after slicing of pears heldat — 1 °C but more slowly in discs cut from pearsimmediately after harvest. Cycloheximide (CHI) inhibited theseincreases and reversed increases resulting from pre-incubationof discs. A combination of CHI and AVG abolished the capacityof discs to synthesize ACC and ethylene production was curtailed.Cordycepin and actinomycin-D were less effective as inhibitorsof the development of ethylene synthesis and ACC synthase activitythan as inhibitors of incorporation of 5-[3H] uridine into totalRNA or poly A rich RNA. The ability of discs to develop ethylenesynthesis and ACC synthase activity in the presence and absenceof cordycepin increased concurrently during storage of wholefruits at — 1 °C. This suggested that mRNA for ACCsynthase was formed at — 1 °C. Key words: 1-Aminocyclopropane-l-carboxylic acid, ethylene, fruit ripening, Pyrus communis L. (fruit ripening)  相似文献   

19.
20.
He CJ  Drew MC  Morgan PW 《Plant physiology》1994,105(3):861-865
Either hypoxia, which stimulates ethylene biosynthesis, or temporary N starvation, which depresses ethylene production, leads to formation of aerenchyma in maize (Zea mays L.) adventitious roots by extensive lysis of cortical cells. We studied the activity of enzymes closely involved in either ethylene formation (1-amino-cyclopropane-1-carboxylic acid synthase [ACC synthase]) or cell-wall dissolution (cellulase). Activity of ACC synthase was stimulated in the apical zone of intact roots by hypoxia, but not by anoxia or N starvation. However, N starvation, as well as hypoxia, did enhance cellulase activity in the apical zone, but not in the older zones of the same roots. Cellulase activity did not increase during hypoxia or N starvation in the presence of aminoethoxyvinylglycine, an inhibitor of ACC synthase, but this inhibition of cellulase induction was reversed during simultaneous exposure to exogenous ethylene. Together these results indicate both the role of ethylene in signaling cell lysis in response to two distinct environmental factors and the significance of hypoxia rather than anoxia in stimulation of ethylene biosynthesis in maize roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号