首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Most of the known pharmacological effects of Panax ginseng on the central nervous system are due to its major components - ginsenosides. Although the antioxidant ability of ginseng root has already been established, this activity has never been evaluated for isolated ginsenosides on astrocytes. The activity of protopanaxadiols Rb(1), Rb(2), Rc and Rd, and protopanaxatriols Re and Rg(1) was evaluated in vitro on astrocytes primary culture by means of an oxidative stress model with H(2)O(2). The viability of astrocytes was determined by the MTT reduction assay and by the LDH release into the incubation medium. The effects on the antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidases (GPx) and glutathione reductase (GR) and on the intracellular reactive oxygen species (ROS) formation were also investigated. Exposure of astrocytes to H(2)O(2) decreased cell viability as well as the antioxidant enzymes activity and increased ROS formation. Oxidative stress produced significant cell death that was reduced by previous treatment with the tested ginsenosides. Ginsenosides Rb(1), Rb(2), Re and Rg(1) were effective in reducing astrocytic death, while Rb(1), Rb(2), Rd, Re and Rg(1) decreased ROS formation, ginsenoside Re being the most active. Ginsenosides from P. ginseng induce neuroprotection mainly through activation of antioxidant enzymes.  相似文献   

4.
Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase   总被引:19,自引:0,他引:19  
Mitogen-activated protein kinase (MAPK) cascades function in biotic and abiotic stress responses in plants. We analysed effect of oxidative stress on the activation of ATMPK6, an Arabidopsis thaliana MAPK, in Arabidopsis T87 cultured cells and rosette leaves using anti-ATMPK6 specific antibody. ATMPK6 in T87 cells was strongly activated by reactive oxygen species (ROS) such as H(2)O(2) and KO(2). In leaves, ATMPK6 was activated by paraquat and 3-amino-1,2,4-triazole (a catalase inhibitor). These results indicate that ATMPK6 is one of the candidates for signal mediators in response to abiotic or biotic sources for ROS in Arabidopsis.  相似文献   

5.
6.
7.
活性氧在UV-B诱导的玉米幼苗叶片乙烯产生中的作用   总被引:3,自引:0,他引:3       下载免费PDF全文
 研究了活性氧在UV-B(280~320 nm)诱导的玉米(Zea mays)幼苗叶片乙烯合成中的作用。结果表明,UV-B促进了玉米幼苗活性氧和乙烯的产生;乙 烯合成抑制剂氨氧乙烯基甘氨酸 (AVG)和氨氧乙酸(AOA)能明显减弱UV-B对玉米幼苗乙烯产生的诱导作用,但对活性氧(ROS)的 产生没有明显影 响;ROS的清除剂不但能抑制UV-B诱导的 ROS的产生,而且还可以抑制UV_B诱导的乙烯的产生,但这种抑制作用可以被外源O2.-的供体所逆转。这 说明,乙烯的积累不能作为UV-B胁迫下ROS的诱导的因素,相反,ROS的积累则导致了乙烯的积累;因此,ROS可能参与了UV-B胁迫诱导的乙烯的产生 。质膜NADPH氧化酶的抑制剂二苯碘鎓(DPI)和H2O2的特异性清除剂过氧化氢酶(CAT)对UV-B胁迫诱导的乙烯积累 几乎没有影响, 这说明H2O2 可能与UV-B诱导的玉米幼苗叶片乙烯的产生无关, 在UV-B诱导的玉米幼苗叶片乙烯的生物合成过程中O2.-起着很重要的作用,相关的O2.-不是由 NADPH氧化酶催化产生的。  相似文献   

8.
Oxidative stress is mainly caused by reactive oxygen species (ROS). The damage causes a net stress on normal organs, leading to a gradual loss of vital physiological function. ROS, such as free radicals, represent a class of molecules which are derived from the metabolism of oxygen and exist inherently. However, excessive produced ROS can damage all aerobic organisms. Ginseng is one of the most commonly used alternative herbal medicines, also as a traditional Chinese medicine. The aim of this study is to investigate the antioxidant potential function of ginsenoside Rg1 against cisplatin-caused hepatic damage. Male mice were treated with cisplatin to induce oxidative stress to mimic the side effect of anti-cancer drug cisplatin. Ginsenoside Rg1 effectively prevented against cisplatin-induced hepatotoxicity, alleviating histological lesions. Antioxidant functions of Rg1 were restrained by the activation of p62–Keap1–Nrf2 signaling pathway, simultaneously accompanied with expression of protein products. Accumulative p62 and increased activation of JNK in hepatocytes promoted the activation of Nrf2. For the other, degradation of Nrf2 was guided by tyrosine phosphorylation, ubiquitin, and Keap1. In summary, Rg1 prevents hepatotoxicity mainly by inhibiting the binding of Keap1 and Nrf2, partly by p62 accumulation, and more importantly by increasing the production of antioxidative proteins associated to Nrf2. Pharmacological activation of Nrf2 is an effective way in combating against liver injury.  相似文献   

9.
10.

Plant methionine sulfoxide reductases (MSRs) can repair oxidative damage done to intracellular proteins and, therefore, play an active role in the response to abiotic stress. However, the function of MSR homologs in maize has not been reported, to the best of our knowledge. In a previous study, we reported that ZmMSRB1 can be induced by salinity stress. In this study, we revealed that ZmMSRB1 is localized to chloroplasts and belongs to the MSRB sub-family. Characterization of an Arabidopsis thaliana msrb1 mutant and lines with ectopic expression of MSRB1 indicated that MSRB1 contributes to tolerance of salinity stress. Overexpression of ZmMSRB1 in Arabidopsis seedlings significantly decreased reactive oxygen species (ROS) accumulation by leading to the downregulation of ROS-generating genes and upregulation of ROS-scavenging genes, which resulted in a significant increase in ROS-scavenging protein activity. ZmMSRB1 overexpression was also found to enhance the expression of Salt Overly Sensitive genes, which maintain intracellular K+/Na+ balance. Furthermore, it resulted in the promotion of expression of key genes involved in glucose metabolism, increasing the soluble sugar content in the leaves. The ZmMSRB1 protein was observed to physically interact with glutathione S-transferase ZmGSTF8 in a yeast two-hybrid assay. GST catalyzes the conjugation of glutathione (GSH) to other compounds, counteracting oxidative damage to cells in vivo. When GSH synthesis was disrupted, the ZmMSRB1-induced response to salinity stress was partially impaired. Together, the findings of the present study indicate that maize MSRB1 promotes resistance to salinity stress by regulating Na+/K+ transport, soluble sugar content, and ROS levels in A. thaliana.

  相似文献   

11.
12.
13.
Nitric oxide (NO) is involved together with reactive oxygen species (ROS) in the activation of various stress responses in plants. We have used ozone (O3) as a tool to elicit ROS-activated stress responses, and to activate cell death in plant leaves. Here, we have investigated the roles and interactions of ROS and NO in the induction and regulation of O3-induced cell death. Treatment with O3 induced a rapid accumulation of NO, which started from guard cells, spread to adjacent epidermal cells and eventually moved to mesophyll cells. During the later time points, NO production coincided with the formation of hypersensitive response (HR)-like lesions. The NO donor sodium nitroprusside (SNP) and O3 individually induced a large set of defence-related genes; however, in a combined treatment SNP attenuated the O3 induction of salicylic acid (SA) biosynthesis and other defence-related genes. Consistent with this, SNP treatment also decreased O3-induced SA accumulation. The O3-sensitive mutant rcd1 was found to be an NO overproducer; in contrast, Atnoa1/rif1 ( Arabidopsis nitric oxide associated 1/resistant to inhibition by FSM1 ), a mutant with decreased production of NO, was also O3 sensitive. This, together with experiments combining O3 and the NO donor SNP suggested that NO can modify signalling, hormone biosynthesis and gene expression in plants during O3 exposure, and that a functional NO production is needed for a proper O3 response. In summary, NO is an important signalling molecule in the response to O3.  相似文献   

14.
Reactive oxygen species (ROS) act as signaling molecules for regulating plant responses to abiotic and biotic stress and there exist source- and kind-specific pathways for ROS signaling. Recently, we created a novel system for producing H2O2 in Arabidopsis chloroplasts by chemical-dependent thylakoid membrane-bound ascorbate peroxidase (tAPX) silencing using an estrogen-inducible RNAi method. Microarray analysis revealed that the expression of a large set of genes was altered in response to tAPX silencing, some of which are known to be involved in pathogen response/resistance. Furthermore, we found that tAPX silencing enhances the levels of salicylic acid (SA) and the response to SA, a central regulator for biotic stress response. In this addendum, we describe the relationship between chloroplastic H2O2 and SA in stress response, and discuss the function of the kind- and source-specific ROS signaling in SA-mediated stress response.  相似文献   

15.
16.
17.
Calcineurin B‐like (CBL) and CBL‐interacting protein kinase (CIPK) play a crucial role in biotic and abiotic stress responses. However, the roles of different CIPKs in biotic and abiotic stress responses are less well characterized. In this study, we identified a mutation leading to an early protein termination of the maize CIPK gene ZmCIPK42 that undergoes a G to A mutation at the coding region via searching for genes involved in salt stress tolerance and ion homeostasis from maize with querying the EMS mutant library of maize B73. The mutant zmcipk42 plants have less branched tassel and impaired salt stress tolerance at the seedling stage. Quantitative real‐time PCR analysis revealed that ZmCIPK42was expressed in diverse tissues and was induced by NaCl stress. A yeast two‐hybrid screen identified a proteinase inhibitor (ZmMPI) as well as calcineurin B‐like protein 1 and protein 4 (ZmCBL1, ZmCBL4) as interaction partners of ZmCIPK42. These interactions were further confirmed by bimolecular fluorescence complementation in plant cells. Moreover, over‐expressing ZmCIPK42 resulted in enhanced tolerance to high salinity in both maize and Arabidopsis. These findings suggest that ZmCIPK42 is a positive regulator of salt stress tolerance and is a promising candidate gene to improve salt stress tolerance in maize through genetic manipulation.  相似文献   

18.
Fu J  Zhang DF  Liu YH  Ying S  Shi YS  Song YC  Li Y  Wang TY 《PloS one》2012,7(2):e31101
Plasma membrane protein 3 (PMP3), a class of small hydrophobic polypeptides with high sequence similarity, is responsible for salt, drought, cold, and abscisic acid. These small hydrophobic ploypeptides play important roles in maintenance of ion homeostasis. In this study, eight ZmPMP3 genes were cloned from maize and responsive to salt, drought, cold and abscisic acid. The eight ZmPMP3s were membrane proteins and their sequences in trans-membrane regions were highly conserved. Phylogenetic analysis showed that they were categorized into three groups. All members of group II were responsive to ABA. Functional complementation showed that with the exception of ZmPMP3-6, all were capable of maintaining membrane potential, which in turn allows for regulation of intracellular ion homeostasis. This process was independent of the presence of Ca(2+). Lastly, over-expression of ZmPMP3-1 enhanced growth of transgenic Arabidopsis under salt condition. Through expression analysis of deduced downstream genes in transgenic plants, expression levels of three ion transporter genes and four important antioxidant genes in ROS scavenging system were increased significantly in transgenic plants during salt stress. This tolerance was likely achieved through diminishing oxidative stress due to the possibility of ZmPMP3-1's involvement in regulation of ion homeostasis, and suggests that the modulation of these conserved small hydrophobic polypeptides could be an effective way to improve salt tolerance in plants.  相似文献   

19.
Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated exp...  相似文献   

20.
很多研究结果证实常春藤可以有效吸收气体甲醛,本研究结果表明常春藤叶片也可以有效吸收液体甲醛,甲醛吸收量和时间呈指数函数关系。2、4、6mmol·L-1液体甲醛处理均在常春藤叶片内诱发氧化胁迫,但2mmol·L-1液体甲醛胁迫在常春藤叶片内诱发的氧化胁迫水平较低。此外,2mmol·L-1液体甲醛胁迫还显著提高了常春藤叶片内可溶性糖和可溶性蛋白的含量,说明常春藤对2mmol-L-1液体甲醛胁迫的抗性较强。通过构建2mmol.L-1液体甲醛胁迫2-48h常春藤叶片的正向SSHcDNA文库,分离鉴定常春藤叶片中的甲醛胁迫应答基因并对甲醛胁迫应答基因进行功能聚类,结果说明光合作用和代谢相关基因占的比例最大,表达分析结果证实光合作用和代谢相关基因在2mmol·L-1液体甲醛胁迫的不同阶段被诱导上调表达,这些基因的上调表达可能和甲醛在常春藤叶片内的代谢脱毒有关。此外,参与植物对多种生物和非生物胁迫应答的14—3-3蛋白基因(14—3-3p)也受2mmol·L-1液体甲醛胁迫的强烈诱导,该基因的上调表达可能参与甲醛胁迫下常春藤叶片内可溶性蛋白的合成与抗氧化系统活性的调控作用,是常春藤叶片应答甲醛胁迫的重要基因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号