首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on DFT-B3LYP/6-311G** method, the molecular geometric structures of polynitramineprismanes are fully optimized. The detonation performances, energy gaps, strain energies, as well as their stability were investigated to look for high energy density compounds (HEDCs). Our results show that all polynitramineprismanes have high and positive heat of formation. To construct the relationship between stabilities and structures, energy gaps and bond dissociation energies are calculated, and these results show that the energy gaps of prismane derivatives are much higher than that of TATB (0.1630). In addition, the C-C bonds on cage are confirmed as trigger bond in explosive reaction. All polynitramineprismanes have large strain energies, and the strain energies of all compounds are slightly smaller than prismane, which indicated that the strain energies were somewhat released compared to prismane. Considering the quantitative criteria of HEDCs, hexanitramineprismane is a good candidate of high energy compounds.  相似文献   

2.
A series of polynitroprismanes, C(6)H(6-n )(NO(2))(n) (n?=?1-6) intended for use as high energy density compounds (HEDCs) were designed computationally. Their electronic structures, heats of formation, interactions between nitro groups, specific enthalpies of combustion, bond dissociation energies, and explosive performances (detonation velocities and detonation pressures) were calculated using density functional theory (DFT) with the 6-311 G** basis set. The results showed that all of the polynitroprismanes had high positive heats of formation that increased with the number of substitutions for the prismane derivatives, while the specific enthalpy of combustion decreased as the number of nitro groups increased. In addition, the range of enthalpy of combustion reducing is getting smaller. Interactions between ortho (vicinal) groups deviate from the group additivity rule and decrease as the number of nitro groups increases. In terms of thermodynamic stability, all of the polynitroprismanes had higher bond dissociation energies (BDEs) than RDX and HMX. Detonation velocities and detonation pressures were estimated using modified Kamlet-Jacobs equations based on the heat of detonation (Q) and the theoretical density of the molecule (ρ). It was found that ρ, D, and P are strongly linearly related to the number of nitro groups. Taking both their energetic properties and thermal stabilities into account, pentanitroprismane and hexanitroprismane are potential candidate HEDCs.  相似文献   

3.
Based on fully optimized geometric structures at DFT-B3LYP/6-311G** level, we calculated electronic structures, heats of formation, strain energies, bond dissociation energies and detonation performance (detonation velocity and detonation pressure) for a series of polynitraminecubanes. Our results have shown that energy gaps of cubane derivatives are much higher than that of triaminotrinitrobenzene (TATB), which means that cubane derivatives may be more sensitive than TATB. Polynitraminecubanes have high and positive heats of formation, and a good linear relationship between heats of formation and nitramine group numbers was presented. As the number of nitramine groups in the molecule increases, the enthalpies of combustion values are increasingly negative, but the specific enthalpy of combustion values decreases. It is found that all cubane derivatives have high strain energies, which are affected by the number and position of nitramine group. The calculated bond dissociation energies of C-NHNO2 and C-C bond show that the C-C bond should be the trigger bond in the pyrolysis process. It is found that detonation velocity (D), detonation pressure (P) and molecule density (ρ) have good linear relationship with substituented group numbers. Heptanitraminecubane and octanitraminecubane have good detonation performance over 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), and they can be regarded as potential candidates of high energy density compounds (HEDCs). The results have not only shown that these compounds may be used as HEDCs, but also provide some useful information for further investigation.  相似文献   

4.
The pyrazole-pyridine derivatives were optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G(d,p) and DFT-B3P86/6-31G(d,p) levels. Molecular mechanics (MM) calculations were performed for the title compounds. Heats of formation (HOFs) were predicted through designed isodesmic reactions. Detonation performance was evaluated by using the Kamlet-Jacobs equations based on the calculated densities and heats of formation. The thermal stability of the title compounds was investigated via the bond dissociation energies (BDEs). The simulation results reveal that the compound with one pyrazole ring that is fully nitro-substituted performs similarly to the famous explosive HMX, and the compound with two pyrazole rings that are fully nitro-substituted outperforms HMX. According to the quantitative standard of energetics and stability as high energy density materials (HEDMs), the compound with two pyrazole rings that are fully nitro-substituted essentially satisfies this requirement.  相似文献   

5.
A series of purine derivatives with nitramine groups are calculated by using density functional theory (DFT). The molecular theory density, heats of formation, bond dissociation energies and detonation performance are investigated at DFT-B3LYP/6-311G** level. The isodesmic reaction method is employed to calculate the HOFs of the energies obtained from electronic structure calculations. Results show that the position of nitramine groups can influence the values of HOFs. The bond dissociation energies and the impact sensitivity are analyzed to investigate the thermal stability of the purine derivatives. The calculated bond dissociation energies of ring-NHNO2 and NH-NO2 bond show that the NH-NO2 bond should be the trigger bond in pyrolysis processes. The H50 of most compounds are larger than that of CL-20 and RDX.  相似文献   

6.
A series of polydinitroaminocubanes have been designed computationally. We calculated the heats of formation, the detonation velocity (D) and detonation pressure (P) of the title compounds by density function theory (DFT) with 6-311?G** basis set. The relationship between the heats of formation and the molecular structures is discussed. The result shows that all cubane derivatives have high and positive heats of formation, which increase with increasing number of dinitroamino groups. The detonation performances of the title compound were estimated by Kamlet-Jacobs equation, and the result indicated that most cubane derivatives have good detonation performance over RDX (hexahydro-1,3,5-trinitro-1,3,5-trizine) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane). In addition, we also found that the heat of detonation (Q) is another very important impact in increasing detonation performance except density. The relative stabilities of the title compound are discussed in the terms of the calculated heats of formation, and the energy gaps between the frontier orbitals. The results have not only shown that these compounds may be used as high energy density compounds (HEDCs), but also provide some useful information for further investigation.  相似文献   

7.
Dinitroamino benzene derivatives are designed and studied in detail with quantum chemistry method. The molecular theory density, heats of formation, bond dissociation energies, impact sensitive and detonation performance are investigated at DFT-B3LYP/6-311G** level. The results of detonation performance indicated most of the compounds have better detonation velocity and pressure than RDX and HMX. The N-N bond can be regard as the trigger bond in explosive reaction, and the bond dissociation energies of trigger bond are almost not affected by the position and number of substituent group. The impact sensitive are calculated by two different theory methods. It is found that the compounds, which can become candidates of high energy materials, have smaller H50 values than RDX and HMX. It is hoped that this work can provide some basis information for further theory and experiment studies of benzene derivatives.  相似文献   

8.
Two new nitramine compounds containing pyridine, 1,3,5,7-tetranitro-8-(nitromethyl) -4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine and its N-oxide 1,3,5,7-tetranitro-8- (nitromethyl)-4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine-4-ol were proposed. Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures, infrared spectra, and thermodynamic properties at the B3LYP/6-31G* level. Their detonation performances evaluated using the Kamlet-Jacobs equations with the calculated densities and heats of formation are superior to those of HMX. The predicted densities of them were ca. 2 g*cm-3, detonation velocities were over 9 km*s-1, and detonation pressures were about 40 GPa, showing that they may be potential candidates of high energy density materials (HEDMs). The natural bond orbital analysis indicated that N-NO2 bond is the trigger bond during thermolysis process. The stability of the title compounds is slightly lower than that of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20). The results of this study may provide basic information for the molecular design of new HEDMs.  相似文献   

9.
A series of pentanuclear gold(I)-copper(I) and -silver(I) mixed-metal alkynyl complexes, [(n)Bu(4)N][Au(3)M(2)(C triple bond CC(6)H(4)R-p)(6)] [M = Cu, R = OMe, O(n)Bu, O(n)Hex, Me, Et; M = Ag, R = Et, O(n)Hex] have been synthesized. The complexes were found to be emissive both in the solid state and in fluid solutions. DFT calculations at the B3LYP level of theory were performed on [Au(3)M(2)(C triple bond CC(6)H(4)Me-p)(6)](-) (M = Cu, Ag) to provide an understanding on the electronic structure of the complexes.  相似文献   

10.
Shokhen M  Albeck A 《Proteins》2000,40(1):154-167
Quantum mechanical ab initio (RHF/6-31+G*//RHF/3-21G) calculations were used to simulate the formation of the tetrahedral complex intermediate (TC) in serine protease active site by substrates and transition-state analog inhibitors. The enzyme active site was simulated by an assembly of the amino acids participating in catalysis, whereas the substrates and inhibitors were simulated by small ligands, acetamide (1) and trifluoroacetone (2), respectively. For the first time, the principal factors determining the relative stability of the TC in serine proteases are arranged according to their energy contributions. These include (a) formation of the new covalent bond between Ser195 O(gamma) and the electrophilic center of a ligand; (b) stabilization of the oxyanion in the oxyanion hole; (c) basic catalysis by His57; and (d) hydrogen bond between Asp102 carboxylate and N(delta) of the protonated His57. We have directly calculated the gas-phase relative free energy of formation of TC(AS)(2) and TC(AS)(1), the value of DeltaDeltaG(g)[TC(AS)(2,1)]. It is DeltaE(cov), the relative energy of the new covalent bond between the enzyme and the ligand formed in a TC that determines the experimentally observed large difference in the stability of TCs formed by substrates and TS-analog inhibitors of serine proteases. We demonstrated that the relative stability of TCs formed by a series of mono- and dipeptide amides and TFKs, derived from experimental kinetic data, can be rather well approximated by the sum of the theoretically calculated value of DeltaDeltaG(g)[TC(AS)(2, 1)] and the difference in hydration free energies of isolated ligands.  相似文献   

11.
The heats of formation (HOFs), electronic structures, energetic properties, and thermal stabilities of a series of energetic bridged di-1,3,5-triazine derivatives with different substituents and linkages were studied using density functional theory. It was found that the groups -N(3) and -N=N- are effective structural units for improving the HOF values of the di-1,3,5-triazine derivatives. The effects of the substituents on the HOMO-LUMO gap combine with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that substituting the -ONO(2), -NF(2), or -N=N- group is very useful for enhancing the detonation performance of these derivatives. Analysis of the bond dissociation energies for several relatively weak bonds suggests that most of the derivatives have good thermal stability. On the whole, the -NH(2), -N(3), -NH-, and -CH=CH- groups are effective structural units for increasing the thermal stabilities of the derivatives. Based on detonation performance and thermal stability, nine of the compounds can be considered potential candidates for high energy density materials with reduced sensitivity.  相似文献   

12.
The density functional theory (DFT) was employed to calculate the energetic properties of several aminopolynitroazoles. The calculations were performed to study the effect of amino and nitro substituents on the heats of formation, densities, detonation performances, thermal stabilities, and sensitivity characteristics of azoles. DFT-B3LYP, DFT-B3PW91, and MP2 methods utilizing the basis sets 6-31 G* and 6-311 G (2df, 3p) were adopted to predict HOFs via designed isodesmic reactions. All of the designed aminopolynitroazoles had heats of formation of >220 kJ mol(-1). The crystal densities of the aminopolynitroazoles were predicted with the cvff force field. All of the energetic azoles had densities of >1.83 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and heats of formation. It was found that aminopolynitroazoles have a detonation velocity of about 9.1 km/s and detonation pressure of 36 GPa. The bond dissociation energies for the C-NO(2) and N-NO(2) bonds were analyzed to investigate the stabilities of the designed molecules. The charge on the nitro group was used to assess impact sensitivity in the present study. The results obtained imply that the designed molecules are stable and are expected to be candidates for high-energy materials (HEMs).  相似文献   

13.
In this work, the experimental synthesized bipyridines 3,3'-Dinitro-2,2'-bipyridine (DNBPy), 3,3'-Dinitro-2,2'-bipyridine-1,1'-dioxide (DNBPyO), and (3-Nitro-2-pyridyl)(5-nitro-2-pyridyl) amine (NPyA), and a set of designed dipyridines that have similar frameworks but different linkages and substituents with NPyA were studied theoretically at the B3LYP/6-31G* level of density functional theory. The gas-phase heats of formation were predicted based on the isodesmic reactions and the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. The crystal densities have been computed from molecular packing. Results show that this method gives a good estimation of density in comparison with the available experimental data for DNBPy, DNBPyO, and NPyA. The predicted detonation velocities and pressures indicate that the performance of dipyridines linked with -O-, -NH-, or -CH(2)- bridges have not been improved compared with that of the directly linked dipyridines, but all derivatives have better detonation properties than DNBPy, DNBPyO, and NPyA because of the presence of more nitro groups. An analysis of the bond dissociation energies (BDEs) or the impact sensitivity (h (50)) suggests that introduction of different bridges but not substituents has little influence on thermal stability. The calculated h (50) may be more reliable than BDE for predicting stability. Four bridged bipyridines have quite good detonation performance and low sensitivity.  相似文献   

14.
As part of a search for high energy density materials (HEDMs), a series of purine derivatives with nitro groups were designed computationally. The relationship between the structures and the performances of these polynitropurines was studied. Density functional theory (DFT) at the B3LYP/6-311G** level was employed to evaluate the heats of formation (HOFs) of the polynitropurines by designing an isodesmic reaction method. Results indicated that the HOFs were influenced by the number and positions of substituent groups. Detonation properties were evaluated using the Kamlet–Jacobs equations, based on the theoretical densities and heats of formation of the polynitropurines. The relative stabilities of the polynitropurines were studied via the pyrolysis mechanism and the UB3LYP/6-311G** method. Homolysis of the ring–NO2 bond is predicted to be the initial step in the thermal decomposition of these purine derivatives. Considering their detonation properties and relative stabilities, the tetranitropurine (D1) derivatives may be regarded as potential candidates for practical HEDCs. These results may provide useful information for further investigations.  相似文献   

15.
The mechanism for extradiol cleavage in non-heme iron catechol dioxygenase was modelled theoretically via density functional theory. Based on the Fe(II)-His,His,Glu motif observed in enzymes, an active site model complex, [Fe(acetate)(imidazole)(2)(catecholate)(O(2))](-), was optimized for states with six, four and two unpaired electrons (U6, U4 and U2, respectively). The transfer of the terminal atom of the coordinated dioxygen leading to "ferryl" Fe=O intermediates spontaneously generates an extradiol epoxide. The computed barriers range from 19 kcal mol(-1) on the U6 surface to approximately 25 kcal mol(-1) on the U4 surface, with overall reaction energies of +11.6, 6.3 and 7.1 kcal mol(-1) for U6, U4 and U2, respectively. The calculations for a protonated process reveal the terminal oxygen of O(2) to be the thermodynamically favoured site but subsequent oxygen transfer to the catechol has a barrier of approximately 30-40 kcal mol(-1), depending on the spin state. Instead, protonating the acetate group gives a slightly higher energy species but a subsequent barrier on the U4 surface of only 7 kcal mol(-1) relative to the hydroperoxide complex. The overall exoergicity increases to 13 kcal mol(-1). The favoured proton-assisted pathway does not involve significant radical character and has features reminiscent of a Criegee rearrangement which involves the participation of the aromatic ring pi-orbitals in the formation of the new carbon-oxygen bond. The subsequent collapse of the epoxide, attack by the coordinated hydroxide and final product formation proceeds with an overall exoergicity of approximately 75 kcal mol(-1) on the U4 surface.  相似文献   

16.
An azo bridge (–N?=?N–) can not only desensitize explosives but also dramatically increase their heats of formation and explosive properties. Amino and nitro are two important high energy density functional groups. Here, we present calculations on 1-nitro-1-triazene (NH2–N?=?N–NO2). Thermal stability and detonation parameters were predicted theoretically at CCSD(T)/6-311G* level, based on the geometries optimized at MP2/6-311G* level. It was found that the p?→?π conjugation interaction and the intramolecular hydrogen bonding that exist in the system together increase the thermal stability of the molecule. Moreover, the detonation parameters were evaluated to be better than those of the famous HMX and RDX. Finally, the compound was demonstrated to be a high energy density material.  相似文献   

17.
An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the π-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.  相似文献   

18.
The derivatives of purine are designed through substituting the hydrogen atoms on it for nitro and amino functional groups. Geometries and frequency are analyzed at the B3LYP/6-31 G** level of density functional theory(DFT). Heats of formation (HOF), bond dissociation energy(BDE) and detonation parameters (detonation velocity and detonation pressure) are obtained in detail at the same level. It is found that the BDE values of all derivatives are over 120KJ·mol(-1), and have high positive heats of formation. These derivatives possess excellent detonation properties, for B1, B2, and C, the detonation velocity are 9.58, 9.57,and 9.90 km·s(-1), and the detonation pressure are 43.40,46.05, and 46.37 Gpa, respectively, the detonation performances are better than cyclotrimethylenetrinitramine (RDX)and cyclotetramethylenetetranitramine (HMX). Hence, the derivations of purine may be promising well-behaved high energy density materials.  相似文献   

19.
The structures of substituted (aminomethyl)lithium and (thiomethyl)lithium compounds have been examined. Geometric parameters, charge densities, bond orders, dipole moments and heats of formation for all the members of the two series of monomers and dimers of the units LiCN(R)2 and LiCSR where R=H, CH3(Me), C6H5(Ph) have been calculated. The structures of the three complex compounds containing the same units; [[Li(CH2SMe)(THF)]X], [Li2(CH2SPh)2(THF)4] and [Li2(CH2NPh2)2(THF)3] have also been modeled. Geometry optimizations have been performed with the semiempirical PM3 method. The molecular orbital calculations have been carried out by a self-consistent field method using the restricted Hartree-Fock formalism. Comparisons have been made with the corresponding properties of methyl lithium monomer and dimer. The results show that in all of the nitrogen-containing monomers, the C-Li bonds weaken and the Li-C-H(N) angles decrease due to the coordination of lithium with nitrogen. Substitution of hydrogen atoms by methyl or phenyl groups decreases the Li-N coordination. In the sulfur-containing compounds, sulfur behaves similarly to nitrogen but the changes are smaller because the 3p lone-pair orbital of sulfur is higher in energy than the 2p lone-pair of nitrogen. All the dimers of nitrogen/sulfur-containing methyl lithium derivatives form six-membered rings in which the Li-N(S) coordination is greater than the one in the corresponding monomers. Dimerization reactions have been found to be exothermic and the formation of all the dimers is favored. The results obtained for the three complex structures are comparable to the experimental results reported in the literature.Keywords:  相似文献   

20.
Molybdenum- or tungsten-containing enzymes catalyze oxygen atom transfer reactions involved in carbon, sulfur, or nitrogen metabolism. It has been observed that reduction potentials and oxygen atom transfer rates are different for W relative to Mo enzymes and the isostructural Mo/W complexes. Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations on [Mo(V)O(bdt)(2)](-) and [W(V)O(bdt)(2)](-), where bdt=benzene-1,2-dithiolate(2-), have been used to determine that the energies of the half-filled redox-active orbital, and thus the reduction potentials and MO bond strengths, are different for these complexes due to relativistic effects in the W sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号