首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study deals with the identification of glutamic acid by means of quantum chemical approach. FT-IR, FT-Raman and UV–vis spectra were recorded in the region 4000–400, 4000–50 cm? 1 and 200–600 nm, respectively. CAM-B3LYP/6-31G(d,p) and B2PLYP/6-31G(d,p) calculations were performed to obtain the optimised molecular structures, vibrational frequencies and corresponding vibrational assignment, thermodynamic properties and natural bonding orbital (NBO) analysis. The results show that the obtained optimised geometric parameters (bond lengths, bond angles and bond dihedrals) and vibrational frequencies were found to be in good agreement with the experimental results. The calculations of the electronic spectra were compared with the experimental ones. Furthermore, highest occupied molecular orbital and lowest unoccupied molecular orbital analyses and UV–vis spectral analysis were also performed to determine the energy band gaps and transition states. NBO analysis, calculated using density functional theory methods (CAM-B3LYP/6-31G(d,p) and B2PLYP/6-31G(d,p)), was induced to find inter-molecular atoms. 13C and 1H NMR isotropic chemical shifts were calculated and the assignments made were compared with the ChemDraw Ultra values.  相似文献   

2.
The structure and thermodynamic properties of the 2, 4-dinitroimidazole complex with methanol were investigated using the B3LYP and MP2(full) methods with the 6-31++G(2d,p) and 6-311++G(3df,2p) basis sets. Four types of hydrogen bonds [N–H?O, C–H?O, O–H?O (nitro oxygen) and O–H?π] were found. The hydrogen-bonded complex having the highest binding energy had a N–H?O hydrogen bond. Analyses of natural bond orbital (NBO) and atoms-in-molecules (AIM) revealed the nature of the intermolecular hydrogen-binding interaction. The changes in thermodynamic properties from monomers to complexes with temperatures ranging from 200.0 to 800.0 K were investigated using the statistical thermodynamic method. Hydrogen-bonded complexes of 2,4-dinitroimidazole with methanol are fostered by low temperatures.
Figure
Molecular structures and bond critical points of 2,4-dinitroimidazole complexes at MP2(full)/6-311++G(3df,2p) level. Structure and thermodynamic property of the 2,4-dinitroimidazole complex with methanol are investigated using the B3LYP and MP2(full) methods with the 6-31++G(2d,p) and 6-311++G(3df,2p) basis sets. Four types of hydrogen bonds (N–H…O, C–H…O, O–H…O (nitro oxygen) and O–H…π) are found. For the hydrogen-bonded complex having the highest binding energy, there is a N–H…O hydrogen bond. The complex formed by the N–H…O hydrogen bond can be produced spontaneously at room temperature and the equilibrium constant is predicted to be 6.354 and 1.219 at 1 atm with the temperature of 268.0 and 298.15 K, respectively.  相似文献   

3.
The FTIR and FT-Raman spectra are reported for the arabinonucleoside ara-T (1-beta-D-arabinofuranosylthymine), which shows antiviral activity. The accurate knowledge of the vibrational modes is a prerequisite for the elucidation of drug-nucleotide and drug-enzyme interactions. The FTIR and FT-Raman spectra of ara-T were recorded from 4000 to 30 cm(-1). A tetradeuterated derivative (deuteration at N3, and hydroxyl groups O'2, O'3, and O'5) was synthesized and the observed isotopic shifts in its spectra were used for the vibrational analysis of ara-T. The theoretical frequencies and the potential energy distribution (PED) of the vibrational modes of ara-T were calculated using the ab initio Hartree-Fock/3-21G method. An assignment of the vibrational spectra of ara-T is proposed considering the scaled PED and the observed band shifts under deuteration. The scaled ab initio frequencies were in reasonable agreement with the experimental data.  相似文献   

4.
Twenty cocaine–water complexes were studied using density functional theory (DFT) B3LYP/6-311++G** level to understand their geometries, energies, vibrational frequencies, charge transfer and topological parameters. Among the 20 complexes, 12 are neutral and eight are protonated in the cocaine-water complexes. Based on the interaction energy, the protonated complexes are more stable than the neutral complexes. In both complexes, the most stable structure involves the hydrogen bond with water at nitrogen atom in the tropane ring and C?=?O groups in methyl ester. Carbonyl groups in benzoyl and methyl ester is the most reactive site in both forms and it is responsible for the stability order. The calculated topological results show that the interactions involved in the hydrogen bond are electrostatic dominant. Natural bond orbital (NBO) analysis confirms the presence of hydrogen bond and it supports the stability order. Atoms in molecules (AIM) and NBO analysis confirms the C-H?·?·?·?O hydrogen bonds formed between the cocaine-water complexes are blue shifted in nature.  相似文献   

5.
The molecular structure (hydrogen bonding, bond distances and angles), dipole moment and vibrational spectroscopic data [vibrational frequencies, IR and vibrational circular dichroism (VCD)] of cyclobutanone?HX (X?=?F, Cl) complexes were calculated using density functional theory (DFT) and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6–311G, 6–311G**, 6–311 + + G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2 and B3LYP levels with basis sets including diffuse functions. Surface potential energy calculations were carried out with scanning HCl and HF near the oxygen atom. The nonlinear hydrogen bonds of 1.81 Å and 175° for HCl and 1.71 Å and 161° for HF were calculated. In these complexes the C=O and H–X bonds participating in the hydrogen bond are elongated, while others bonds are compressed. The calculated vibrational spectra were interpreted and the band assignments reported are in excellent agreement with experimental IR spectra. The C=O stretching vibrational frequencies of the complexes show red shifts with respect to cyclobutanone.  相似文献   

6.
9-beta-D-arabinofuranosyaldenine-5'-monophosphate (5'-ara-AMP) is an arabinonucleotide that has antiviral and antitumor activity. The accurate knowledge of the nature of its vibrational modes is a valuable step for the forthcoming elucidation of drug-nucleotide and drug-enzyme interactions. The FTIR and FT Raman spectra (4000-30 cm(-1)) of 5'ara-AMP and two deuterated derivatives ara-AMP-d(C8) (deuteration in C8) and ara-AMP-d7 (deuteration in C8, amino and hydroxyl groups) are reported. Theoretical vibrational calculations were performed using the Hartree-Fock/6-31G** method. An assignment of the observed spectra is proposed considering the scaled potential energy distribution of the vibrational modes of the 5'ara-AMP molecule and the observed band shifts by deuteration. The scaled ab initio frequencies are in good agreement with the experimental data (<3 cm(-1) SD).  相似文献   

7.
B3LYP/6-31G(d,p) level of theory is used to carry out a detailed gas phase conformational analysis of non-ionized (neutral) pyrrolysine molecule about its nine internal back-bone torsional angles. A total of 13 minima are detected from potential energy surface exploration corresponding to the nine internal back-bone torsional angles. These minima are then subjected to full geometry optimization and vibrational frequency calculations at B3LYP/6-31++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. Single point calculations are carried out at B3LYP/6-311++G(d,p) and MP2/6-31++G(d,p) levels. Six types of intramolecular H-bonds, viz. O…H–O, N…H-O, O…H–N, N…H–N, O…H–C and N…H–C, are found to exist in the pyrrolysine conformers; all of which contribute to the stability of the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of intramolecular H-bond interactions in the conformers.  相似文献   

8.
Hydrogen-bonding effects in the crystalline structure of N-acetyl-valine, NAV, were studied using the (14)N and (2)H quadrupole coupling tensors via density functional theory. The calculations were carried out at the B3LYP level with the 6-311++G(d,p) and 6-311+G(d) basis sets. The theoretical quadrupole coupling components and their relative orientation in the molecular frame axes at the nitrogen site are compared to experimental values. This nucleus is involved in a rather strong intermolecular O=CNH...O=CNH hydrogen bond, r(N-H...O(1))=2.04 A and angleN-H...O(1)=171.53 degrees. A reasonably good agreement between the experimentally obtained (2)H quadrupole coupling tensors and the B3LYP/6-311++G(d,p) calculations is achievable only in molecular model where a complete hydrogen-bonding network is considered.  相似文献   

9.
ωB97XD/6-311++G(d,p) calculations were carried out to investigate the hydrogen-bonding interactions between adrenaline (Ad) and water. Six Ad-H(2)O complexes possessing various types of hydrogen bonds (H-bonds) were characterized in terms of their geometries, energies, vibrational frequencies, and electron-density topology. Natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses were performed to elucidate the nature of the hydrogen-bonding interactions in these complexes. The intramolecular H-bond between the amino and carboxyl oxygen atom of Ad was retained in most of the complexes, and cooperativity between the intra- and intermolecular H-bonds was present in some of the complexes. H-bonds in which hydroxyls of Ad/water acted as proton donors were stronger than other H-bonds. Both hydrogen-bonding interactions and structural deformation play important roles in the relative stabilities of the complexes. The intramolecular H-bond was broken during the formation of the most stable complex, which indicates that Ad tends to break the intramolecular H-bond and form two new intermolecular H-bonds with the first water molecule.  相似文献   

10.
A density functional theory study has been carried out to calculate the (17)O, (15)N, (13)C, and (1)H chemical shielding as well as (17)O, (14)N, and (2)H electric field gradient tensors of chitosan/HI type I salt. These calculations were performed using the B3LYP functional and 6-311++G (d,p) and 6-31++G (d,p) basis sets. Calculated EFG and chemical shielding tensors were used to evaluate the (17)O, (14)N, and (2)H nuclear quadruple resonance, NQR, and (17)O, (15)N, (13)C, and (1)H nuclear magnetic resonance, NMR, parameters in the cluster model, which are in good agreement with the available experimental data. The difference in the isotropic shielding (sigma(iso)) and quadrupole coupling constant (C(Q)) between monomer and target molecule in the cluster was analyzed in detail. It was shown that both EFG and CS tensors are sensitive to hydrogen-bonding interactions, and calculating both tensors is an advantage. A different influence of various hydrogen bond types, N-Hcdots, three dots, centeredI, O-Hcdots, three dots, centeredI, and N-Hcdots, three dots, centeredO was observed on the calculated CS and EFG tensors. On the basis of this study, nitrogen and O-6 are the most important nuclei to confirm crystalline structure of chitosan/HI. These nuclei have large change in their CS and EFG tensors because of forming intermolecular hydrogen bonds. Moreover, the quantum chemical calculations indicated that the intermolecular hydrogen-bonding interactions play an essential role in determining the relative orientation of CS and EFG tensors of O-6 and nitrogen atoms in the molecular frame axes.  相似文献   

11.
The molecular structure (bond distances and angles), conformational properties, dipole moment and vibrational spectroscopic data (vibrational frequencies, IR and Raman intensities) of phenyl benzoate were calculated using Hartree–Fock (HF), density functional (DFT), and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6-31G* to 6-311++G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2, B3LYP and B3PW91 levels with basis sets including diffuse functions. The B3LYP/6-31+G* theory level estimates the shape of the experimental functions for phenyl torsion around the Ph–O and Ph–C bonds well, but reproduces the height of the rotational barriers poorly. The B3LYP/6-31+G* harmonic force constants were scaled by applying the scaled quantum mechanical force field (SQM) technique. The calculated vibrational spectra were interpreted and band assignments were reported. They are in excellent agreement with experimental IR and Raman spectra.Figure Calculated and experimental (GED) potential energy functions for torsional motion of phenyl benzoate relative to the minimum value. a The potential function for torsion about the O3–C4 bond. b The potential function for torsion about the C2–C10 bond.  相似文献   

12.
A total of 16 pyrrolysine conformers in their zwitterionic forms are studied in gas and simulated aqueous phase using a polarizable continuum model (PCM). These conformers are selected on the basis of our study on the intrinsic conformational properties of non-ionic pyrrolysine molecule in gas phase [Das and Mandal (2013) J Mol Model 19:1695?1704]. In aqueous phase, the stable zwitterionic pyrrolysine conformers are characterized by full geometry optimization and vibrational frequency calculations using B3LYP/6-311++G(d,p) level of theory. Single point calculations are also carried out at MP2/6-311++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. The calculated relative energy range of the conformers at B3LYP/6-311++G(d,p) level is 5.19 kcal mol?1 whereas the same obtained by single point calculations at MP2/6-311++G(d,p) level is 4.58 kcal mol?1. A thorough analysis reveals that four types of intramolecular H-bonds are present in the conformers; all of which play key roles in determining the energetics and in imparting the observed conformations to the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of the H-bonds. This study also points out that conformers with diverse structural motifs may differ in their thermodynamical stability by a narrow range of relative energy. The effects of metal coordination on the relative stability order and structural features of the conformers are examined by complexing five zwitterionic conformers of pyrrolysine with Cu+2 through their carboxylate groups. The interaction enthalpies and Gibbs energies, rotational constants, vibrational frequencies and dipole moments of the metal complexes calculated at B3LYP level are also reported. The zwitterionic conformers of pyrrolysine are not stable in gas phase; after geometry optimization they are converted to the non-ionic forms.  相似文献   

13.
The FTIR spectrum of 2-nitroaniline was recorded in the regions 4000–400 cm−1. The optimized molecular geometry, bond orders, atomic charges, harmonic vibrational wave numbers and intensities of vibrational bands of 2-nitroaniline and its cation were calculated at DFT levels invoking two different basis sets 6-31G** and 6-31+G** using Gaussian 03W program. The X-ray geometry and FTIR vibrational frequencies were compared with the results of DFT calculations. The thermal stability of 2NA is studied by the thermo gravimetric analysis (TGA). Experimental degradation process of 2-nitroaniline was interpreted with the bond order analysis. The Mulliken atomic charge analysis was also made in the present study. Based on the molecular geometry and Mulliken charge analysis, intra molecular hydrogen bonding was identified.  相似文献   

14.
The Fourier transform infrared (FT-IR) spectrum of 6-chloro-8-thia-1,4-epoxybicyclo[4.3.0]non-2-ene has been recorded in the region 4000–525 cm? 1. The optimised geometry, frequency and intensity of the vibrational bands of the title compound have been calculated using the ab initio Hartree–Fock and the density functional theory method with 6-31G(d,p) and 6-311G(d,p) basis set levels. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectrum of the title compound were interpreted by means of potential energy distributions using VEDA 4 program.  相似文献   

15.
A theoretical study is presented with the aim to investigate the molecular properties of intermolecular complexes formed by the monomeric units of polyvinylpyrrolidone (PVP) or polyethyleneglycol (PEG) polymers and a set of four imidazolidine (hydantoine) derivatives. The substitution of the carbonyl groups for thiocarbonyl in the hydantoin scaffold was taken into account when analyzing the effect of the hydrogen bonds on imidazolidine derivatives. B3LYP/6-31G(d,p) calculations and topological integrations derived from the quantum theory of atoms in molecules (QTAIM) were applied with the purpose of examining the N–H⋯O hydrogen bond strengths formed between the amide group of the hydantoine ring and the oxygen atoms of PVP and PEG polymers. The effects caused by the N–H⋯O interaction fit the typical evidence for hydrogen bonds, which includes a variation in the stretch frequencies of the N–H bonds. These frequencies were identified as being vibrational red-shifts because their values decreased. Although the values of such calculated interaction energies are between 12 and 33 kJ mol−1, secondary intermolecular interactions were also identified. One of these secondary interactions is formed through the interaction of the benzyl hydrogen atoms with the oxygen atoms of the PVP and PEG structures. As such, we have analyzed the stretch frequencies on the C–H bonds of the benzyl groups, and blue-shifts were identified on these bonds. In this sense, the intermolecular systems formed by hydantoine derivatives and PVP/PEG monomers were characterized as a mix of red-shifting and blue-shifting hydrogen-bonded complexes.  相似文献   

16.
Infrared spectra in the range 400-4000 cm(-1) of three pentitols--ribitol, xylitol, D-arabinitol, and of three pyranosides--methyl alpha-D-manno-, methyl alpha-D-gluco- and methyl beta-D-galactopyranoside, as polycrystalline solids of both the pure OH and > 90% isotopically substituted OD compounds, were recorded at 20-300 K. In the low temperature spectra of the OH substances, at least three isolated narrow bands in the stretching mode and about ten narrow bands in the out-of-plane-bending mode range (< 1000 cm(-1)) are affected by cooling. Almost all have counterparts in the respective OD spectra with frequency ratios of 1.30-1.40. On this basis, they are assigned to OH groups bonded in H-bonds of different strengths (from 10 to 50 kJ mol(-1)). The average number of the OH...O hydrogen bonds is found to be two to three times larger than indicated by the stretching mode only or by structural data. The newly measured peak frequencies of the very narrow decoupled stretching mode bands show a correlation between the red shift (delta nu) and the H-bond length. As previously found for tetritols, the presence of weak H-bonds (bond energy < 14 kJ mol(-1)) is related to the different water sorption capabilities of the pentitols.  相似文献   

17.
Oh SY  Yoo DI  Shin Y  Kim HC  Kim HY  Chung YS  Park WH  Youk JH 《Carbohydrate research》2005,340(15):2376-2391
Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and cellulose II lattice. From the ratio of the peak area, that is, peak area of cellulose I (or cellulose II)/total peak area, CI(XD) were divided into CI(XD-CI) for cellulose I and CI(XD-CII) for cellulose II. The correlation between CI(XD-CI) (or CI(XD-CII)) and CI(IR) was evaluated, and the bands at 2901 (2802), 1373 (1376), 897 (894), 1263, 668 cm(-1) were good for the internal standard (or denominator) of CI(IR), which increased the correlation coefficient. Both fraction of the absorbances showing peak shift were assigned as the alternate components of CI(IR). The crystallite size was decreased to constant value for Cell 2 treated at >or= 15 wt% NaOH. The crystallite size of Cell 2-C (cellulose II) was smaller than that of Cell 2 (cellulose I) treated at 5-10 wt% NaOH. But the crystallite size of Cell 2-C (cellulose II) was larger than that of Cell 2 (cellulose II) treated at 15-20 wt% NaOH.  相似文献   

18.
Extensive DFT and ab initio calculations were performed to characterize the conformational space of pamidronate, a typical pharmaceutical for bone diseases. Mono-, di- and tri-protic states of molecule, relevant for physiological pH range, were investigated for both canonical and zwitterionic tautomers. Semiempirical PM6 method were used for prescreening of the single bond rotamers followed by geometry optimizations at the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels. For numerous identified low energy conformers the final electronic energies were determined at the MP2/6-311++G(2df,2p) level and corrected for thermal effects at B3LYP level. Solvation effects were also considered via the COSMO and C-PCM implicit models. Reasonable agreement was found between bond lengths and angle values in comparison with X-ray crystal structures. Relative equilibrium populations of different conformers were determined from molecular partition functions and the role of electronic, vibrational and rotational degrees of freedom on the stability of conformers were analyzed. For no level of theory is a zwitterionic structure stable in the gas-phase while solvation makes them available depending on the protonation state. Geometrically identified intramolecular hydrogen bonds were analyzed by QTAIM approach. All conformers exhibit strong inter-phosphonate hydrogen bonds and in most of them the alkyl-amine side chain is folded on the P-C-P backbone for further hydrogen bond formation.
Figure
The most stable conformers of pamidronate at different protonation states in gas-phase and solution.  相似文献   

19.
Raman spectra of neat pyrrole (C(4)H(5)N) and its binary mixtures with dichloromethane (CH(2)Cl(2), DCM) with varying mole fractions of C(4)H(5)N from 0.1 to 0.9 were recorded in order to monitor the influence of molecular interaction on spectral features of selected vibrational bands of pyrrole in the region 600-1600 cm(-1). Only 1369 cm(-1) vibrational band of pyrrole shows a significant change in its peak position in going from neat pyrrole to the complexes. The 1369 cm(-1) band shows (~6 cm(-1)) blue shift upon dilution and the corresponding linewidth shows the maximum shift at C?=?0.5 mole fraction of pyrrole upon dilution which clearly indicates that the concentration fluctuation model plays major role. Quantum chemical calculation using density functional theory (DFT) and ab-initio (MP2 and HF) methods were performed employing high level basis set, 6-311++G(d,p) to obtain the ground state geometry of neat pyrrole and its complexes with DCM in gas phase. Basis set superimpose error (BSSE) correction was also introduced by using the counterpoise method. In order to account for the solvent effect on vibrational features and changes in optimized structural parameters of pyrrole, polarizable continuum model (PCM) (bulk solvations) and PCM (specific plus bulk solvations) calculations were performed. Two possible configurations of pyrrole + DCM complex have been predicted by B3LYP and HF methods, whereas the MP2 method gave only single configuration in which H atom of DCM is bonded to π ring of the pyrrole molecule. This affects significantly the ring vibrations of pyrrole molecule, which was also observed in our experimental results.  相似文献   

20.
Experimental and calculated (B3LYP/6‐31G(d)) vibrational circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent DFT optimizations (B3LYP/6‐31G(d)) provides a structure for the lowest energy conformer which agrees well with the structure determined by X‐ray diffraction. In addition, a conformer at an energy of 7 kJ mol?1 (B3LYP/6‐311+G(2d,2p)) with respect to the lowest energy conformer is predicted, displaying different intramolecular hydrogen bonding. Differences between measured and calculated IR and VCD spectra for GB at certain wavenumbers are rationalized in terms of interactions with solvent, intermolecular GB‐GB interactions, and the potential presence of more than one conformer. This is the first detailed investigation of the spectroscopic fingerprint region (850?1300 cm?1) of the natural product GB employing infrared absorption and VCD spectroscopy. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号