首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on our own studies and on literature data, there are considered peculiarities of structural-functional organization of the crustacean olfactory system and effects of pollutants on it. The behavioral reaction changes based on chemoreception in the polluted aquatic environment are described. Usefulness of study of the crustacean olfactory system is substantiated as a perspective object of ecologo-toxicological investigations.  相似文献   

2.
Aquatic environments are by their nature dynamic and dominated by fluid movements driven by lunar tides, temperature and salinity density gradients, wind-driven currents, and currents generated by the earth's rotation. Accordingly, animals within the aquatic realm must be able to sense and respond to both large-scale (advection) and small-scale (eddy turbulence) fluid dynamics, for chemical signals critically important for their survival are embedded within such movements. Aquatic crustaceans possess many types of near-field fluid-flow detectors and two general classes of chemoreceptors on their body appendages: high-threshold, near-field receptors that may be somewhat equated with the sense of taste, and low-threshold far-field receptors that can be considered as olfactory. This review briefly summarizes the distribution of hydrodynamic and high-threshold chemoreceptors in aquatic crustaceans and the physiological characteristics of olfactory receptors in lobsters; it also examines recent physiological evidence for the central nervous integration of inputs from olfactory receptors and hydrodynamic detectors, two dissimilar senses that must be combined within the brain for survival. Marine crustaceans have provided valuable insights about mechanisms of primary olfactory sensory physiology; their additional sensitivity to hydrodynamic stimulation makes them a potentially useful model for examining how these two critical sensory inputs are combined within the brain to enhance foraging behavior. Multimodal sensory processing is critically important to all animals, and the principles and concepts derived from these crustacean studies may provide generalities about neuronal processing across taxa.  相似文献   

3.
Detection of glia-derived nexin in the olfactory system of the rat   总被引:4,自引:0,他引:4  
Glia-derived nexin (GDN) is a 43 kd cell-secreted protease inhibitor with neurite promoting activity. We have raised specific polyclonal antisera to rat GDN. These antibodies stain a single band at 43 kd on immunoblots of concentrated C6 glioma-conditioned medium and have been used to demonstrate that GDN is present in the olfactory system of the rat. One band at 43 kd is recognized by the GDN antibodies on immunoblots of olfactory bulb homogenate. Immunohistochemistry shows that GDN occurs predominantly in the olfactory nerve layer of the olfactory bulb and in the olfactory submucosa. Comparative studies with antibodies against vimentin, GFAP, and fibronectin suggest that anti-GDN recognizes cells associated with the olfactory system, but not exclusively the olfactory neurons themselves. Data from the immunohistochemical studies were confirmed by RNA blots and GDN mRNA expression throughout development of the olfactory bulb. The high levels of GDN in the rat olfactory system may be related to the continuous degeneration and regeneration phenomena taking place in these structures.  相似文献   

4.
5.
哺乳类两大嗅觉系统功能的研究进展   总被引:1,自引:0,他引:1  
近年来对于嗅觉系统的研究已成为动物学研究的热点之一,本文通过对以往关于哺乳类两大嗅觉系统功能的研究进行总结和回顾,对目前犁鼻器系统(VOE-AOB)和主嗅觉系统(MOE-MOB)功能结论上的争议做了初步探讨。通过概括和总结,发现目前对两大嗅觉系统功能还存在争议,其原因可能有以下几点:以前的研究方法上可能有不完善之处;不同的研究采用的物种不同,结论上的争议也许与不同物种间存在种间差异有关;动物的社会经验对研究结论可能也有一定影响。希望通过本文能进一步促进今后此方面的研究。  相似文献   

6.
Lectin histochemical studies were performed on paraffin embedded sections of the olfactory system of the eel to identify specific glycoconjugates on the surface of primary olfactory neurons. The olfactory receptors, the olfactory nerve fibres and their terminals in the bulbs were labelled with the lectins (SBA, BSA-I, BSA-I-B4 and DBA) HRP-conjugated or biotinylated. The lectin staining patterns indicate that the membrane of olfactory neurons of the eel had oligosaccharides with alpha-galactose and alpha-N-acetyl-D-galactosamine residues. These findings represent the demonstration of a molecular probe that recognizes specific sets of neurons. The identical histochemical features previously described in the olfactory neurons in amphibians suggest that these carbohydrate moieties might to related to modulation of the cell-cell interactions in the olfactory system of vertebrates.  相似文献   

7.
ABSTRACT: BACKGROUND: Remipedia, a group of homonomously segmented, cave-dwelling, eyeless arthropods have been regarded as basal crustaceans in most early morphological and taxonomic studies. However, molecular sequence information together with the discovery of a highly differentiated brain led to a reconsideration of their phylogenetic position. Various conflicting hypotheses have been proposed including the claim for a basal position of Remipedia up to a close relationship with Malacostraca or Hexapoda. To provide new morphological characters that may allow phylogenetic insights, we have analyzed the architecture of the remipede brain in more detail using immunocytochemistry (serotonin, acetylated alpha-tubulin, synapsin) combined with confocal laser-scanning microscopy and image reconstruction techniques. This approach allows for a comprehensive neuroanatomical comparison with other crustacean and hexapod taxa. RESULTS: The dominant structures of the brain are the deutocerebral olfactory neuropils, which are linked by the olfactory globular tracts to the protocerebral hemiellipsoid bodies. The olfactory globular tracts form a characteristic chiasm in the center of the brain. In Speleonectes tulumensis, each brain hemisphere contains about 120 serotonin immunoreactive neurons, which are distributed in distinct cell groups supplying fine, profusely branching neurites to 16 neuropilar domains. The olfactory neuropil comprises more than 300 spherical olfactory glomeruli arranged in sublobes. Eight serotonin immunoreactive neurons homogeneously innervate the olfactory glomeruli. In the protocerebrum, serotonin immunoreactivity revealed several structures, which, based on their position and connectivity resemble a central complex comprising a central body, a protocerebral bridge, W-, X-, Y-, Z-tracts, and lateral accessory lobes. CONCLUSIONS: The brain of Remipedia shows several plesiomorphic features shared with other Mandibulata, such as deutocerebral olfactory neuropils with a glomerular organization, innervations by serotonin immunoreactive interneurons, and connections to protocerebral neuropils. Also, we provided tentative evidence for W-, X-, Y-, Z-tracts in the remipedian central complex like in the brain of Malacostraca, and Hexapoda. Furthermore, Remipedia display several synapomorphies with Malacostraca supporting a sister group relationship between both taxa. These homologies include a chiasm of the olfactory globular tract, which connects the olfactory neuropils with the lateral protocerebrum and the presence of hemiellipsoid bodies. Even though a growing number of molecular investigations unites Remipedia and Cephalocarida, our neuroanatomical comparison does not provide support for such a sister group relationship.  相似文献   

8.
Several serine proteases and protease inhibitors have been identified in the crustacean olfactory organ, which is comprised of the lateral flagellum of the antennule and its aesthetascs sensilla that house olfactory receptor neurons and their supporting cells. The function of these proteases in the olfactory organ is unknown, but may include a role in perireception (e.g., odor activation or inactivation) or in the development or survival of olfactory receptor neurons. To examine directly the function of proteases in the olfactory organ of the Caribbean spiny lobster Panulirus argus, we used different tissue fractions from the lateral flagellum in an enzyme activity assay with a variety of protease substrates and inhibitors. Trypsin-like serine protease activity occurs throughout the lateral flagellum but is enriched in the cell membranes from aesthetascs. Cysteine- and metalloprotease activities also occur in olfactory tissue, but are more abundant in tissue fractions other than aesthetascs. To assess the contribution of one of the olfactory serine proteases--CUB-serine protease (Csp)--Csp was immunoprecipitated using an antibody; results with the remaining fraction suggest that Csp accounts for at least 40% of the total serine protease activity in the olfactory organ. The amount of total serine protease activity follows a developmental axis in the lateral flagellum. Total protease activity is lowest in the proximal zone, which lacks aesthetascs, and the proliferation zone, where olfactory receptor neurons and associated cells are born, and highest in aesthetascs of the distally-located senescence zone, which has the oldest olfactory tissue.  相似文献   

9.
啮齿动物的嗅觉通讯研究进展   总被引:6,自引:3,他引:6  
通过对近40 年来啮齿动物嗅觉通讯的研究综述, 主要介绍嗅觉信号的来源、组成及其对啮齿动物行为生理所产生的作用。啮齿动物嗅觉通讯的信号来源主要是粪便、尿液和特化皮肤腺等, 对这些化学信号的成分分析主要集中在各种信息素(Pheromone) 的结构、来源及其引起的行为反应。目前, 在对啮齿动物嗅觉通讯神经通路的研究中, 对主嗅觉系统和犁鼻器系统在动物嗅觉通讯中的作用仍将是人们研究的重点; 而通过信息素作用所产生的各种行为反应的神经内分泌机制也是动物嗅觉通讯领域研究的热点之一。研究气味信号对动物行为和生理等方面所产生的作用, 将有助于揭示啮齿动物嗅觉通讯在其社会行为中的重要作用。  相似文献   

10.
In Drosophila, the cephalic gap gene empty spiracles plays key roles in embryonic patterning of the peripheral and central nervous system. During postembryonic development, it is involved in the development of central olfactory circuitry in the antennal lobe of the adult. However, its possible role in the postembryonic development of peripheral olfactory sense organs has not been investigated. Here, we show that empty spiracles acts in a subset of precursors that generate the olfactory sense organs of the adult antenna. All empty spiracles-expressing precursor cells co-express the proneural gene amos and the early patterning gene lozenge. Moreover, the expression of empty spiracles in these precursor cells is dependent on both amos and lozenge. Functional analysis reveals two distinct roles of empty spiracles in the development of olfactory sense organs. Genetic interaction studies in a lozenge-sensitized background uncover a requirement of empty spiracles in the formation of trichoid and basiconic olfactory sensilla. MARCM-based clonal mutant analysis reveals an additional role during axonal targeting of olfactory sensory neurons to glomeruli within the antennal lobe. Our findings on empty spiracles action in olfactory sense organ development complement previous studies that demonstrate its requirement in olfactory interneurons and, taken together with studies on the murine homologs of empty spiracles, suggest that conserved molecular genetic programs might be responsible for the formation of both peripheral and central olfactory circuitry in insects and mammals.  相似文献   

11.
12.
We summarize literature from animal and human studies assessing sex differences in the ability of the main olfactory system to detect and process sex‐specific olfactory signals (“pheromones”) that control the expression of psychosexual functions in males and females. A case is made in non primate mammals for an obligatory role of pheromonal signaling via the main olfactory system (in addition to the vomeronasal‐accessory olfactory system) in mate recognition and sexual arousal, with male‐specific as well as female‐specific pheromones subserving these functions in the opposite sex. Although the case for an obligatory role of pheromones in mate recognition and mating among old world primates, including humans, is weaker, we review the current literature assessing the role of putative human pheromones (eg, AND, EST, “copulin”), detected by the main olfactory system, in promoting mate choice and mating in men and women. Based on animal studies, we hypothesize that sexually dimorphic effects of putative human pheromones are mediated via main olfactory inputs to the medial amygdala which, in turn, transmits olfactory information to sites in the hypothalamus that regulate reproduction.  相似文献   

13.
The pectines of scorpions are a single pair of mechano- and chemosensory appendages located ventrally behind the most posterior pair of walking legs. They are used for probing the substrate in behaviours such as prey tracking and courtship. The sensory afferents on the pectines supply large segmental neuropils with a conspicuous glomerular structure. The pectine neuropils thus bear similarities to insect and crustacean deutocerebral chemosensory centres associated with the antennae, but they also possess idiosyncratic features. One characteristic property of many insect and decapod crustacean olfactory neuropils is their innervation by single, or very few, large serotonergic (inter-) neurons. This feature, among others, has been proposed to support homology of the olfactory lobes in the two arthropod groups. A possible serotonergic innervation of the scorpion pectine neuropils has not yet been studied, despite its apparent diagnostic and functional importance. We thus examined serotonin-immunoreactivity in the pectine neuropils of Androctonus australis and Pandinus imperator. Both scorpion species yielded similar results. The periphery of the neuropil and the matrix between the glomeruli are supplied by a dense network of serotonin-immunoreactive (5-HT-ir) arborisations and varicosities, while the glomeruli themselves are mostly free of 5-HT-ir fibres. The 5-HT-ir supply of the pectine neuropils has two origins. The first is a pair of neurons on each body side, up to 30 μm in diameter and thus slightly larger than the surrounding somata. These cell bodies are and associated with the neuromeres of the genital and pectine segments. The situation is reminiscent of the 5-HT supply of insect and crustacean olfactory and antennal neuropils. The second 5-HT innervation of the pectine neuropils is from a group of some 10-20 ipsilateral neuronal somata of slightly smaller size (15-20 μm). These are part of a much larger 5-HT-ir group comprising 70-90 somata. The whole group is located more anteriorly than the single soma mentioned above, and associated with the neuromere of the last (4th) walking leg. When compared to data from other arthropods, our findings may suggest that glomerular organisation is an ancestral feature of primary chemosensory centres innervated by arthropod appendages. This idea needs further scrutiny, although supporting evidence may have been overlooked previously, due to the small size of chemosensory neuropils in walking legs and in reduced segmental appendages.  相似文献   

14.
Within the Arthropoda, morphologies of neurons, the organization of neurons within neuropils and the occurrence of neuropils can be highly conserved and provide robust characters for phylogenetic analyses. The present paper reviews some features of insect and crustacean brains that speak against an entomostracan origin of the insects, contrary to received opinion. Neural organization in brain centres, comprising olfactory pathways, optic lobes and a central neuropil that is thought to play a cardinal role in multi-joint movement, support affinities between insects and malacostracan crustaceans.  相似文献   

15.
Several serine proteases and protease inhibitors have been identified in the crustacean olfactory organ, which is comprised of the lateral flagellum of the antennule and its aesthetascs sensilla that house olfactory receptor neurons and their supporting cells. The function of these proteases in the olfactory organ is unknown, but may include a role in perireception (e.g., odor activation or inactivation) or in the development or survival of olfactory receptor neurons. To examine directly the function of proteases in the olfactory organ of the Caribbean spiny lobster Panulirus argus, we used different tissue fractions from the lateral flagellum in an enzyme activity assay with a variety of protease substrates and inhibitors. Trypsin‐like serine protease activity occurs throughout the lateral flagellum but is enriched in the cell membranes from aesthetascs. Cysteine‐ and metalloprotease activities also occur in olfactory tissue, but are more abundant in tissue fractions other than aesthetascs. To assess the contribution of one of the olfactory serine proteases—CUB‐serine protease (Csp)—Csp was immunoprecipitated using an antibody; results with the remaining fraction suggest that Csp accounts for at least 40% of the total serine protease activity in the olfactory organ. The amount of total serine protease activity follows a developmental axis in the lateral flagellum. Total protease activity is lowest in the proximal zone, which lacks aesthetascs, and the proliferation zone, where olfactory receptor neurons and associated cells are born, and highest in aesthetascs of the distally‐located senescence zone, which has the oldest olfactory tissue. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

16.
Pax6 is involved in the control of neuronal specification, migration, and differentiation in the olfactory epithelium and in the generation of different interneuron subtypes in the olfactory bulb. Whether these roles are conserved during evolution is not known. Cartilaginous fish are extremely useful models for assessing the ancestral condition of brain organization because of their phylogenetic position. To shed light on the evolution of development of the olfactory system in vertebrates and on the involvement of Pax6 in this process, we analyzed by in situ hybridization and immunohistochemistry the expression pattern of Pax6 in the developing olfactory system in a basal vertebrate, the lesser spotted dogfish Scyliorhinus canicula. This small shark is becoming an important fish model in studies of vertebrate development. We report Pax6 expression in cells of the olfactory epithelium and olfactory bulb, and present the first evidence in vertebrates of strings of Pax6-expressing cells extending along the developing olfactory nerve. The results indicate the olfactory epithelium as the origin of these cells. These data are compatible with a role for Pax6 in the development of the olfactory epithelium and fibers, and provide a basis for future investigations into the mechanisms that regulate development of the olfactory system throughout evolution.  相似文献   

17.
嗅球对嗅觉信息的处理   总被引:2,自引:0,他引:2  
哺乳动物的嗅觉系统拥有惊人的能力,它可以识别和分辨成千上万种分子结构各异的气味分子。这种识别能力是由基因决定的。近年来,分子生物学和神经生理学的研究使得我们对嗅觉识别的分子基础和嗅觉系统神经连接的认识有了质的飞跃。气味分子的识别是由一千多种气味受体完成的,鼻腔中的嗅觉感觉神经元表达这些气味受体基因。每个感觉神经元只表达一种气味受体基因。表达同种气味受体的感觉神经元投射到嗅球表面的一个或几个嗅小球中,从而在嗅球中形成一个精确的二维连接图谱。了解嗅球对气味信息的加工和处理方式是我们研究嗅觉系统信号编码的一个重要环节。文章概述并总结了有关嗅球信号处理的最新研究成果。  相似文献   

18.
Neurogenesis persists throughout life in the olfactory pathway of many decapod crustaceans. However, the relationships between precursor cells and the temporal characteristics of mitotic events in these midbrain regions have not been examined. We have conducted studies aimed at characterizing the sequence of proliferative events that leads to the production of new deutocerebral projection neurons in embryos of the American lobster, Homarus americanus. In vivo bromodeoxyuridine (BrdU) labeling patterns show that three distinct cell types are involved in neurogenesis in this region. Quantitative and temporal analyses suggest that the clearing time for BrdU is 2-3 days in lobster embryos, and that the sequence of proliferative events in the midbrain is significantly different from the stereotypical pattern for the generation of neurons in the ventral nerve cord ganglia of insects and crustaceans. The unusual pattern of proliferation in the crustacean midbrain may be related to the persistence of neurogenesis throughout life in these regions.  相似文献   

19.
1.  In order to understand the functional organization of the crustacean olfactory system, we are using intracellular recording and staining techniques to correlate the structure and function of single, odorant-sensitive interneurons in the brain of the crayfishProcambarus clarkii. We describe here the anatomy and physiology of interneurons that connect the brain with the medullae terminales or other eyestalk ganglia.
2.  All of the interneurons in our study (Table 1, Figs. 3–15) are at least third-order olfactory neurons (second-order olfactory interneurons) because they respond to chemostimulation of the olfactory organ (the antennules) but do not branch in the olfactory lobe (the neuropil to which primary olfactory receptor cells of the antennules project).
3.  Much of the central nervous system, including the three main divisions of the brain (protocerebrum, deuterocerebrum, tritocerebrum) (Fig. 1) and the medullae terminales (Fig. 2), are involved in integrating olfactory or multimodal (including olfactory) information, since these areas contain neurites of olfactory interneurons. Previous studies have indicated that regions involved in such processing include the olfactory lobes and accessory lobes of the deuterocerebrum, and regions I, II, IV, and VII (in some species) of the medullae terminales. Our results show that also prominent among regions involved in olfactory or multimodal (including olfactory) integration are the anterior and posterior optic neuropils of the protocerebrum (Figs. 3–11, 14, 15), the lateral and medial antennular neuropils of the deuterocerebrum (Figs. 3, 4, 7), the tegumentary neuropils (Figs. 3, 4, 8, 11) and the antennal neuropils (Figs. 3–5) of the tritocerebrum, and neuropils III, VI, XII of the medullae terminales (Figs. 12, 13).
4.  These olfactory interneurons were sensitive to chemostimulation (unimodal), chemo- and mechanostimulation (bimodal), or chemo-, mechano-, and photostimulation (trimodal) (Table 1). Responses could be excitatory or inhibitory, even for a given neuron (Table 1). Morphologically complex interneurons (those having bilateral branching) were more likely to have complex response characteristics (trimodal sensitivity) (Figs. 8–12) than were morphologically simpler interneurons (those having unilateral branching) (Figs. 3–7, 14, 15). Olfactory interneurons with a soma in the medulla terminalis showed the most complex response profiles: they were trimodal, and were excited by odorants but were inhibited by touch and/or light (Figs. 12, 13). This finding suggests that these are complex, high order interneurons.
5.  Our studies reveal that olfactory and other sensory information is transmitted between the brain and the medullae terminales (and possibly other eyestalk ganglia) by a coactivated, parallel array of structurally and functionally diverse neurons.
  相似文献   

20.
The odor coding system of Drosophila   总被引:3,自引:0,他引:3  
Our understanding of the molecular and cellular organization of the Drosophila melanogaster olfactory system has increased dramatically in recent years. A large family of approximately 60 odorant receptors has been identified, and many of these receptors have been functionally characterized. The odor responses of olfactory receptor neurons have been characterized, and much has been learned about how odors are represented in olfactory centers in the brain. The circuitry of the olfactory system has been studied in detail, and the developmental mechanisms that specify the wiring and functional diversity of olfactory neurons are becoming increasingly well understood. Thus, functional, anatomical and developmental studies are rapidly being integrated to form a unified picture of odor coding in this model olfactory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号