首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the studies reported here, we have examined the properties of the Mcp element from the Drosophila melanogaster bithorax complex (BX-C). We have found that sequences from the Mcp region of BX-C have properties characteristic of Polycomb response elements (PREs), and that they silence adjacent reporters by a mechanism that requires trans-interactions between two copies of the transgene. However, Mcp trans-regulatory interactions have several novel features. In contrast to classical transvection, homolog pairing does not seem to be required. Thus, trans-regulatory interactions can be observed not only between Mcp transgenes inserted at the same site, but also between Mcp transgenes inserted at distant sites on the same chromosomal arm, or even on different arms. Trans-regulation can even be observed between transgenes inserted on different chromosomes. A small 800-bp Mcp sequence is sufficient to mediate these long-distance trans-regulatory interactions. This small fragment has little silencing activity on its own and must be combined with other Polycomb-Group-responsive elements to function as a "pairing-sensitive" silencer. Finally, this pairing element can also mediate long-distance interactions between enhancers and promoters, activating mini-white expression.  相似文献   

2.
Gohl D  Müller M  Pirrotta V  Affolter M  Schedl P 《Genetics》2008,178(1):127-143
Intra- and interchromosomal interactions have been implicated in a number of genetic phenomena in diverse organisms, suggesting that the higher-order structural organization of chromosomes in the nucleus can have a profound impact on gene regulation. In Drosophila, homologous chromosomes remain paired in somatic tissues, allowing for trans interactions between genes and regulatory elements on the two homologs. One consequence of homolog pairing is the phenomenon of transvection, in which regulatory elements on one homolog can affect the expression of a gene in trans. We report a new instance of transvection at the Drosophila apterous (ap) locus. Two different insertions of boundary elements in the ap regulatory region were identified. The boundaries are inserted between the ap wing enhancer and the ap promoter and have highly penetrant wing defects typical of mutants in ap. When crossed to an ap promoter deletion, both boundary inserts exhibit the interallelic complementation characteristic of transvection. To confirm that transvection occurs at ap, we generated a deletion of the ap wing enhancer by FRT-mediated recombination. When the wing-enhancer deletion is crossed to the ap promoter deletion, strong transvection is observed. Interestingly, the two boundary elements, which are inserted ~10 kb apart, fail to block enhancer action when they are present in trans to one another. We demonstrate that this is unlikely to be due to insulator bypass. The transvection effects described here may provide insight into the role that boundary element pairing plays in enhancer blocking both in cis and in trans.  相似文献   

3.
4.
5.
Position effect variegation of most Drosophila melanogaster genes, including the white eye pigment gene, is recessive. We find that this is not always the case for white transgenes. Three examples are described in which a lesion causing variegation is capable of silencing the white transgene on the paired homologue (trans-inactivation). These examples include two different transgene constructs inserted at three distinct genomic locations. The lesions that cause variegation of white minimally disrupt the linear order of genes on the chromosomes, permitting close homologous pairing. At one of these sites, trans-inactivation has also been extended to include a vital gene in the vicinity of the white transgene insertion. These findings suggest that many Drosophila genes, in many positions in the genome, can sense the heterochromatic state of a paired homologue.  相似文献   

6.
7.
8.
9.
In Drosophila, clusters of P transgenes (P-lac-w) display a variegating phenotype for the w marker. In addition, X-ray-induced rearrangements of chromosomes bearing such clusters may lead to enhancement of the variegated phenotype. Since P-lacZ transgenes in subtelomeric heterochromatin have some P-element repression abilities, we tested whether P-lac-w clusters also have the capacity to repress P-element activity in the germline. One cluster (T-1), located on a rearranged chromosome (T2;3) and derived from a line bearing a variegating tandem array of seven P-lac-w elements, partially represses the dysgenic sterility (GD sterility) induced by P elements. This cluster also strongly represses in trans the expression of P-lacZ elements in the germline. This latter suppression shows a maternal effect. Finally, the combination of variegating P-lac-w clusters and a single P-lacZ reporter inserted in subtelomeric heterochromatic sequences at the X chromosome telomere (cytological site 1A) leads to strong repression of dysgenic sterility. These results show that repression of P-induced dysgenic sterility can be elicited in the absence of P elements encoding a polypeptide repressor and that a transgene cluster can repress the expression of a single homologous transgene at a nonallelic position. Implications for models of transposable element silencing are discussed.  相似文献   

10.
Scaffold or matrix attachment region (S/MAR) genetic elements have previously been proposed to insulate transgenes from repressive effects linked to their site of integration within the host cell genome. We have evaluated their use in various stable transfection settings to increase the production of recombinant proteins such as monoclonal antibodies from Chinese hamster ovary (CHO) cell lines. Using the green fluorescent protein coding sequence, we show that S/MAR elements mediate a dual effect on the population of transfected cells. First, S/MAR elements almost fully abolish the occurrence of cell clones that express little transgene that may result from transgene integration in an unfavorable chromosomal environment. Second, they increase the overall expression of the transgene over the whole range of expression levels, allowing the detection of cells with significantly higher levels of transgene expression. An optimal setting was identified as the addition of a S/MAR element both in cis (on the transgene expression vector) and in trans (co-transfected on a separate plasmid). When used to express immunoglobulins, the S/MAR element enabled cell clones with high and stable levels of expression to be isolated following the analysis of a few cell lines generated without transgene amplification procedures.  相似文献   

11.
12.
Gene therapy has emerged from the idea of inserting a wild-type copy of a gene in order to restore the proper expression and function of a damaged gene. Initial efforts have focused on finding the proper vector and delivery method to introduce a corrected gene to the affected tissue or cell type. Even though these first attempts are clearly promising, several problems remain unsolved. A major problem is the influence of chromatin structure on transgene expression. To overcome chromatin-dependent repressive transgenic states, researchers have begun to use chromatin regulatory elements to drive transgene expression. Insulators or chromatin boundaries are able to protect a transgene against chromatin position effects at their genomic integration sites, and they are able to maintain transgene expression for long periods of time. Therefore, these elements may be very useful tools in gene therapy applications for ensuring high-level and stable expression of transgenes.  相似文献   

13.
BACKGROUND: Heat-shock proteins (hsps) are thought to protect cells against stresses, especially due to elevated temperatures. But while genetic manipulation of hsp gene expression can protect microorganisms and cultured metazoan cells against lethal stress, this has so far not been demonstrated in multicellular organisms. Testing whether expression of an hsp transgene contributes to increased stress tolerance is complicated by a general problem of transgene analysis: if the transgene cannot be targeted to a precise site in the genome, newly observed phenotypes may be due to either the action of the transgene or mutations caused by the transgene insertion. RESULTS: To study the relationship between heat tolerance and hsp expression in Drosophila melanogaster, we have developed a novel method for transgene analysis, based upon the site-specific FLP recombinase. The method employs site-specific sister chromatid exchange to create an allelic series of transgene insertions that share the same integration site, but differ in transgene copy number. Phenotypic differences between members of this series can be confidently attributed to the transgenes. Using such an allelic series and a novel thermotolerance assay for Drosophila embryos, we investigated the role of the 70 kD heat-shock protein, Hsp 70, in thermotolerance. At early embryonic stages, Hsp70 accumulation was rate-limiting for thermotolerance, and elevated Hsp70 expression increased survival at extreme temperatures. CONCLUSION: Our results provide an improved method for analyzing transgenes and demonstrate that, in Drosophila, Hsp70 is a critical thermotolerance factor. They show, moreover, that manipulating the expression of a single hsp can be sufficient to improve the stress tolerance of a complex multicellular organism.  相似文献   

14.
15.
16.
The phenomenon of transvection has been well characterized for the yellow locus in Drosophila. Enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other when its own enhancers are blocked by the su(Hw) insulator introduced by the gypsy retrotransposon. Insertion of another gypsy into the neighboring scute locus hinders transvection presumably owing to disruption of chromosomal synapsis between the yellow alleles. We determined the sequences of gypsy required for inhibition of transvection. Two partial revertants of the scD1 mutation were obtained in which transvection between the yellow alleles was restored. Both sc revertants were generated by deletion of nine of the twelve su(Hw)-binding sites of gypsy inserted into the scute locus. This result suggests that the su(Hw) region is required for an interaction between two gypsy elements that disrupts trans activation of the yellow promoter by enhancers located on the homologous chromosome.  相似文献   

17.
There are now many mammalian examples in which single cell assays of transgene activity have revealed variegated patterns of expression. We have previously reported that transgenes in which globin regulatory elements drive the lacZ reporter gene exhibit variegated expression patterns in mouse erythrocytes, with transgene activity detectable in only a sub-population of circulating erythroid cells. In order to elucidate the molecular mechanism responsible for variegated expression in this system, we have compared the chromatin structure and methylation status of the transgene locus in expressing and non-expressing populations of erythrocytes. We find that there is a difference in the chromatin conformation of the transgene locus between the two states. Relative to active transgenes, transgene loci which have been silenced exhibit a reduced sensitivity to general digestion by DNase I, as well as a failure to establish a transgene-specific DNase I hypersensitive site, suggesting that silenced transgenes are situated within less accessible chromatin structures. Surprisingly, the restrictive chromatin structure observed at silenced transgene loci did not correlate with increased methylation, with transgenes from both active and inactive loci appearing largely unmethylated following analysis with methylation-sensitive restriction enzymes and by sequencing PCR products derived from bisulphite-converted genomic DNA.  相似文献   

18.
Transfection of transgenes into Drosophila cultured cells is a standard approach for studying gene function. However, the number of transgenes present in the cell following transient transfection or stable random integration varies, and the resulting differences in expression level affect interpretation. Here we developed a system for Drosophila cell lines that allows selection of cells with a single-copy transgene inserted at a specific genomic site using recombination-mediated cassette exchange (RMCE). We used the φC31 integrase and its target sites attP and attB for RMCE. Cell lines with an attP-flanked genomic cassette were transfected with donor plasmids containing a transgene of interest (UAS-x), a dihydrofolate reductase (UAS-DHFR) gene flanked by attB sequences, and a thymidine kinase (UAS-TK) gene in the plasmid backbone outside the attB sequences. In cells undergoing RMCE, UAS-x and UAS-DHFR were exchanged for the attP-flanked genomic cassette, and UAS-TK was excluded. These cells were selected using methotrexate, which requires DHFR expression, and ganciclovir, which causes death in cells expressing TK. Pure populations of cells with one copy of a stably integrated transgene were efficiently selected by cloning or mass culture in ∼6 weeks. Our results show that RMCE avoids the problems associated with current methods, where transgene number is not controlled, and facilitates the rapid generation of Drosophila cell lines in which expression from a single transgene can be studied.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号