首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(7):452-456
Mammalian females have two X chromosomes, while males have only one X plus a Y chromosome. In order to balance X-linked gene dosage between the sexes, one X chromosome undergoes inactivation during development of female embryos. This process has been termed X-chromosome inactivation (XCI). Inactivation of the single X chromosome also occurs in the male, but is transient and is confined to the late stages of first meiotic prophase during spermatogenesis. This phenomenon has been termed meiotic sex chromosome inactivation (MSCI). A substantial portion (~15-25%) of X-linked mRNA-encoding genes escapes XCI in female somatic cells. While no mRNA genes are known to escape MSCI in males, ~80% of X-linked miRNA genes have been shown to escape this process. Recent results have led to the proposal that the RNA interference mechanism may be involved in regulating XCI in female cells. We suggest that some MSCI-escaping miRNAs may play a similar role in regulating MSCI in male germ cells.  相似文献   

2.
3.
In female somatic cells of mammalian species one X chromosome is inactivated to ensure dosage equality of X-encoded genes between females and males, during development and adulthood. X chromosome inactivation (XCI) involves various epigenetic mechanisms, including RNA mediated gene silencing in cis, DNA methylation, and changes in chromatin modifications and composition. XCI therefore provides an attractive paradigm to study epigenetic gene regulation in a more general context. The XCI process starts with counting of the number of X chromosomes present in a nucleus, and initiation of XCI follows if this number exceeds one per diploid genome. Recently, X-encoded RNF12 has been identified as a dose-dependent activator of XCI. In addition, other factors, including the pluripotency factors OCT4, SOX2 and Nanog, have been implicated to play a role in suppression of initiation of XCI. In this review, we highlight and explain these new and old findings in the context of a stochastic model for X chromosome counting and XCI initiation.  相似文献   

4.
5.
6.
X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes.  相似文献   

7.
Xist regulation and function eXplored   总被引:2,自引:0,他引:2  
Pontier DB  Gribnau J 《Human genetics》2011,130(2):223-236
  相似文献   

8.
New and Xisting regulatory mechanisms of X chromosome inactivation   总被引:1,自引:0,他引:1  
Equalization of X linked gene expression is necessary in mammalian cells due to the presence of two X chromosomes in females and one in males. To achieve this, all female cells inactivate one of the two X chromosomes during development. This process, termed X chromosome inactivation (XCI), is a quintessential epigenetic phenomenon and involves a complex interplay between noncoding RNAs and protein factors. Progress in this area of study has consequently resulted in new approaches to study epigenetics and regulatory RNA function. Here we will discuss recent developments in the field that have advanced our understanding of XCI and its regulatory mechanisms.  相似文献   

9.
In female mouse embryos, the paternal X chromosome (Xp) is preferentially inactivated during preimplantation development and trophoblast differentiation. This imprinted X-chromosome inactivation (XCI) is partly due to an activating imprint on the maternal X chromosome (Xm), which is set during oocyte growth. However, the nature of this imprint is unknown. DNA methylation is one candidate, and therefore we examined whether disruptions of the two de novo DNA methyltransferases in growing oocytes affect imprinted XCI. We found that accumulation of histone H3 lysine-27 trimethylation, a hallmark of XCI, occurs normally on the Xp, and not on the Xm, in female blastocysts developed from the mutant oocytes. Furthermore, the allelic expression patterns of X-linked genes including Xist and Tsix were unchanged in preimplantation embryos and also in the trophoblast. These results show that a maternal disruption of the DNA methyltransferases has no effect on imprinted XCI and argue that de novo DNA methylation is dispensable for Xm imprinting. This underscores the difference between imprinted XCI and autosomal imprinting.  相似文献   

10.

Background

X-chromosome inactivation (XCI) results in the silencing of most genes on one X chromosome, yielding mono-allelic expression in individual cells. However, random XCI results in expression of both alleles in most females. Allelic imbalances have been used genome-wide to detect mono-allelically expressed genes. Analysis of X-linked allelic imbalance in females with skewed XCI offers the opportunity to identify genes that escape XCI with bi-allelic expression in contrast to those with mono-allelic expression and which are therefore subject to XCI.

Results

We determine XCI status for 409 genes, all of which have at least five informative females in our dataset. The majority of genes are subject to XCI and genes that escape from XCI show a continuum of expression from the inactive X. Inactive X expression corresponds to differences in the level of histone modification detected by allelic imbalance after chromatin immunoprecipitation. Differences in XCI between populations and between cell lines derived from different tissues are observed.

Conclusions

We demonstrate that allelic imbalance can be used to determine an inactivation status for X-linked genes, even without completely non-random XCI. There is a range of expression from the inactive X. Genes escaping XCI, including those that do so in only a subset of females, cluster together, demonstrating that XCI and location on the X chromosome are related. In addition to revealing mechanisms involved in cis-gene regulation, determining which genes escape XCI can expand our understanding of the contributions of X-linked genes to sexual dimorphism.  相似文献   

11.
Tian D  Sun S  Lee JT 《Cell》2010,143(3):390-403
  相似文献   

12.
X-inactivation and human disease: X-linked dominant male-lethal disorders   总被引:1,自引:0,他引:1  
X chromosome inactivation (XCI) is the process by which the dosage imbalance of X-linked genes between XX females and XY males is functionally equalized. XCI modulates the phenotype of females carrying mutations in X-linked genes, as observed in X-linked dominant male-lethal disorders such as oral-facial-digital type I (OFDI) and microphthalmia with linear skin-defects syndromes. The remarkable degree of heterogeneity in the XCI pattern among female individuals, as revealed by the recently reported XCI profile of the human X chromosome, could account for the phenotypic variability observed in these diseases. Furthermore, the recent characterization of a murine model for OFDI shows how interspecies differences in the XCI pattern between Homo sapiens and Mus musculus result in discrepancies between the phenotypes observed in patients and mice.  相似文献   

13.
14.
Although familial recurrences of Rett syndrome (RTT) comprise only approximately 1% of the reported cases, it is these cases that hold the key for the understanding of the genetic basis of the disorder. Families in which RTT occurs in mother and daughter, aunt and niece, and half sisters are consistent with dominant inheritance and variable expressivity of the phenotype. Recurrence of RTT in sisters is likely due to germ-line mosaicism in one of the parents, rather than to recessive inheritance. The exclusive occurrence of classic RTT in females led to the hypothesis that it is X-linked and may be lethal in males. In an X-linked dominant disorder, unaffected obligate-carrier females would be expected to show nonrandom or skewed inactivation of the X chromosome bearing the mutant allele. We investigated the X chromosome inactivation (XCI) patterns in the female members of a newly identified family with recurrence of RTT in a maternal aunt and a niece. Skewing of XCI is present in the obligate carrier in this family, supporting the hypothesis that RTT is an X-linked disorder. However, evaluation of the XCI pattern in the mother of affected half sisters shows random XCI, suggesting germ-line mosaicism as the cause of repeated transmission in this family. To determine which regions of the X chromosome were inherited concordantly/discordantly by the probands, we genotyped the individuals in the aunt-niece family and two previously reported pairs of half sisters. These combined exclusion-mapping data allow us to exclude the RTT locus from the interval between DXS1053 in Xp22.2 and DXS1222 in Xq22.3. This represents an extension of the previous exclusion map.  相似文献   

15.
Regulation of X-chromosome inactivation by the X-inactivation centre   总被引:1,自引:0,他引:1  
X-chromosome inactivation (XCI) ensures dosage compensation in mammals and is a paradigm for allele-specific gene expression on a chromosome-wide scale. Important insights have been made into the developmental dynamics of this process. Recent studies have identified several cis- and trans-acting factors that regulate the initiation of XCI via the X-inactivation centre. Such studies have shed light on the relationship between XCI and pluripotency. They have also revealed the existence of dosage-dependent activators that trigger XCI when more than one X chromosome is present, as well as possible mechanisms underlying the monoallelic regulation of this process. The recent discovery of the plasticity of the inactive state during early development, or during cloning, and induced pluripotency have also contributed to the X chromosome becoming a gold standard in reprogramming studies.  相似文献   

16.
17.
In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient''s exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation.  相似文献   

18.
X-chromosome inactivation (XCI) is a pivotal epigenetic mechanism involved in the dosage compensation of X-linked genes between males and females. In any given cell, the process of XCI in early female development is thought to be random across alleles and clonally maintained once established. Recent studies, however, suggest that XCI might not always be random and that skewed inactivation may become more prevalent with age. The factors influencing such XCI skewing and its changes over time are largely unknown. To elucidate the influence of stochastic, heritable and environmental factors in longitudinal changes in XCI, we examined X inactivation profiles in a sample of monozygotic (MZ) (n = 23) and dizygotic (DZ) (n = 22) female twin-pairs at ages 5 and 10 years. Compared to MZ twins who were highly concordant for allelic XCI ratios, DZ twins showed much lower levels of concordance. Whilst XCI patterns were moderately stable between ages 5 and 10 years, there was some drift over time with an increased prevalence of more extreme XCI skewing at age 10. To our knowledge, this study represents the earliest longitudinal assessment of skewed XCI patterns, and suggests that skewed XCI may already be established in early childhood. Our data also suggest a link between MZ twinning and the establishment of allelic XCI ratios, and demonstrate that acquired skewing in XCI after establishment is primarily mediated by stochastic mechanisms. These data have implications for our understanding about sex differences in complex disease, and the potential causes of phenotypic discordance between MZ female twins.  相似文献   

19.
Wang  Xuexia  Boekstegers  Felix  Brinster  Regina 《BMC genetics》2018,19(1):109-117

Background

X chromosome inactivation (XCI) is an important gene regulation mechanism in females to equalize the expression levels of X chromosome between two sexes. Generally, one of two X chromosomes in females is randomly chosen to be inactivated. Nonrandom XCI (XCI skewing) is also observed in females, which has been reported to play an important role in many X-linked diseases. However, there is no statistical measure available for the degree of the XCI skewing based on family data in population genetics.

Results

In this article, we propose a statistical approach to measure the degree of the XCI skewing based on family trios, which is represented by a ratio of two genotypic relative risks in females. The point estimate of the ratio is obtained from the maximum likelihood estimates of two genotypic relative risks. When parental genotypes are missing in some family trios, the expectation-conditional-maximization algorithm is adopted to obtain the corresponding maximum likelihood estimates. Further, the confidence interval of the ratio is derived based on the likelihood ratio test. Simulation results show that the likelihood-based confidence interval has an accurate coverage probability under the situations considered. Also, we apply our proposed method to the rheumatoid arthritis data from USA for its practical use, and find out that a locus, rs2238907, may undergo the XCI skewing against the at-risk allele. But this needs to be further confirmed by molecular genetics.

Conclusions

The proposed statistical measure for the skewness of XCI is applicable to complete family trio data or family trio data with some paternal genotypes missing. The likelihood-based confidence interval has an accurate coverage probability under the situations considered. Therefore, our proposed statistical measure is generally recommended in practice for discovering the potential loci which undergo the XCI skewing.
  相似文献   

20.
A model is proposed for the evolution of X-chromosome inactivation (XCI) in which natural selection initially favors the silencing of paternally derived alleles of X-linked demand inhibitors. The compensatory upregulation of maternally derived alleles establishes a requirement for monoallelic expression in females. For this reason, XCI is self-reinforcing once established. However, inactivation of a particular X chromosome is not. Random XCI (rXCI) is favored over paternal XCI because rXCI reduces the costs of functional hemizygosity in females. Once present, rXCI favors the evolution of locus-by-locus imprinting of X-linked loci, which creates an evolutionary dynamic in which different chromosomes compete to remain active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号