首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Native state topology has been implicated as a major determinant of protein-folding mechanisms. Here, we test experimentally the robustness of the src SH3-domain folding transition state to changes in topology by covalently constraining regions of the protein with disulfide crosslinks and then performing kinetic analysis on point mutations in the context of these modified proteins. Circularization (crosslinking the N and C termini) of the src SH3 domain makes the protein topologically symmetric and causes delocalization of structure in the transition state ensemble suggesting a change in the folding mechanism. In contrast, crosslinking a single structural element (the distal beta-hairpin) which is an essential part of the transition state, results in a protein that folds 30 times faster, but does not change the distribution of structure in the transition state. As the transition states of distantly related SH3 domains were previously found to be very similar, we conclude that the free energy landscape of this protein family contains deep features which are relatively insensitive to sequence variations but can be altered by changes in topology.  相似文献   

3.
How tightly packed is the hydrophobic core of a folding transition state structure? We have addressed this question by characterizing the effects on folding kinetics of > 40 substitutions of both large and small amino acids in the hydrophobic core of the Fyn SH3 domain. Our results show that residues at three positions, which we designate as the 'core folding nucleus', are tightly packed in the transition state, and substitutions at these positions cause the largest changes in the folding rate. The other six positions examined appear to be loosely packed; thus, substitutions at these positions with larger hydrophobic residues generally accelerate folding, presumably by increasing the rate of nonspecific hydrophobic collapse. Surprisingly, the folding rate can be greatly accelerated by residues that also significantly destabilize the native state structure. Furthermore, mutants with identical thermodynamic stability can differ by up to 55-fold in their folding rates. These results highlight the importance of hydrophobic core composition, as opposed to only topology, in determining the folding rate of a protein. They also provide a new explanation for the 'abnormal' phi-values observed in many protein folding kinetics studies.  相似文献   

4.
Experimental observations suggest that proteins follow different folding pathways under different environmental conditions. We perform molecular dynamics simulations of a model of the c-Crk SH3 domain over a broad range of temperatures, and identify distinct pathways in the folding transition. We determine the kinetic partition temperature-the temperature for which the c-Crk SH3 domain undergoes a rapid folding transition with minimal kinetic barriers-and observe that below this temperature the model protein may undergo a folding transition by multiple folding pathways via only one or two intermediates. Our findings suggest the hypothesis that the SH3 domain, a protein fold for which only two-state folding kinetics was observed in previous experiments, may exhibit intermediate states under conditions that strongly stabilize the native state.  相似文献   

5.
We use a combination of experiments, computer simulations and simple model calculations to characterize, first, the folding transition state ensemble of the src SH3 domain, and second, the features of the protein that determine its folding mechanism. Kinetic analysis of mutations at 52 of the 57 residues in the src SH3 domain revealed that the transition state ensemble is even more polarized than suspected earlier: no single alanine substitution in the N-terminal 15 residues or the C-terminal 9 residues has more than a two-fold effect on the folding rate, while such substitutions at 15 sites in the central three-stranded beta-sheet cause significant decreases in the folding rate. Molecular dynamics (MD) unfolding simulations and ab initio folding simulations on the src SH3 domain exhibit a hierarchy of folding similar to that observed in the experiments. The similarity in folding mechanism of different SH3 domains and the similar hierarchy of structure formation observed in the experiments and the simulations can be largely accounted for by a simple native state topology-based model of protein folding energy landscapes.  相似文献   

6.
The folding/unfolding equilibrium of the alpha-spectrin SH3 domain has been measured by NMR-detected hydrogen/deuterium exchange and by differential scanning calorimetry. Protection factors against exchange have been obtained under native conditions for more than half of the residues in the domain. Most protected residues are located at the beta-strands, the short 3(10) helix, and part of the long RT loop, whereas the loops connecting secondary structure elements show no measurable protection. Apparent stability constants per residue and their corresponding Gibbs energies have been calculated from the exchange experiments. The most stable region of the SH3 domain is defined by the central portions of the beta-strands. The peptide binding region, on the other hand, is composed of a highly stable region (residues 53-57) and a highly unstable region, the loop between residues 34-41 (n-Src loop). All residues in the domain have apparent Gibbs energies lower than the global unfolding Gibbs energy measured by differential scanning calorimetry, indicating that under our experimental conditions the amide exchange of all residues in the SH3 domain occurs primarily via local unfolding reactions. A structure-based thermodynamic analysis has allowed us to predict correctly the thermodynamics of the global unfolding of the domain and to define the ensemble of conformational states that quantitatively accounts for the observed pattern of hydrogen exchange protection. These results demonstrate that under native conditions the SH3 domain needs to be considered as an ensemble of conformations and that the hydrogen exchange data obtained under those conditions cannot be interpreted by a two-state equilibrium. The observation that specific regions of a protein are able to undergo independent local folding/unfolding reactions indicates that under native conditions the scale of cooperative interactions is regional rather than global.  相似文献   

7.
Parallel folding pathways in the SH3 domain protein   总被引:2,自引:0,他引:2  
The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Go model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.  相似文献   

8.
Recombinant microbial transglutaminase has been expressed in Escherichia coli as insoluble inclusion bodies. After we searched for refolding conditions, refolding of the protein could be done by first dilution of the unfolded enzyme in a buffer at pH 4.0, and then by titration of the pH from 4.0 to 6.0. CD analysis showed that a burst of secondary structure formation occurred within the dead time of the experiment and accounted for 75% of the signal change in the far UV CD, with little tertiary structure being formed. This burst was followed by slow rearrangement of the secondary structure accompanied by formation of tertiary structure. The secondary and tertiary structures of the final sample at pH 4.0, corresponding to the folding intermediate, were different from these structures at pH 6.0. Once the native structure was obtained, acidification of the native protein to pH 4.0 did not lead to a structure like that of the folding intermediate. Sedimentation velocity analysis showed that the folding intermediate had an expanded structure and contained no other structure species including large aggregates.  相似文献   

9.
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.  相似文献   

10.
Bruton's tyrosine kinase (BTK) plays an important role in B cell development. Deletion of C-terminal 14 amino acids of the SH3 domain of BTK results in X-linked agammaglobulinemia (XLA), an inherited disease. We report here on the stability and folding of SH3 domain of BTK. Peptides corresponding to residues 216–273 (58 residues) and 216–259 (44 residues) of BTK SH3 domain were synthesized by solid phase methods; the first peptide constitutes the entire SH3 domain of BTK while the latter peptide lacks 14 amino acid residues of the C-terminal. The 58 amino acid peptide forms mainly a β-barrel type folding unit. Although small and lacking disulfide bonds, this peptide is extremely stable to thermal denaturation. Based on circular dichroism measurements, its melting temperature was found to be high, 82°C at pH 6.0. However, the Gibbs free energy (ΔG) of the intrinsic stability and thermodynamic spontaneity of unfolding were found to be low, 2.6 kcal/mol by Gdn·HCl denaturation experiments, as compared to 12 kcal/mol obtained for larger single domain proteins, indicating poor stability of SH3 domain. Addition of 500 mM of Na2SO4 increased the free energy change ΔG to 4.0 kcal/mol, suggesting an ionic strength effect. The truncated peptide fails to fold correctly and adopts random coil conformation in contrast to 58 amino acid β-barrel peptide, which exhibits high thermal stability but normal or low stability at ambient temperature. These results, to our knowledge the first to delineate the importance of C-terminal in structural integrity of SH3 domains, indicate also that improper folding and/or poor stability of mutant SH3 domain in BTK likely causes XLA. Proteins 28:465–471 © 1996 Wiley-Liss, Inc.  相似文献   

11.
We present a verified computational model of the SH3 domain transition state (TS) ensemble. This model was built for three separate SH3 domains using experimental phi-values as structural constraints in all-atom protein folding simulations. While averaging over all conformations incorrectly considers non-TS conformations as transition states, quantifying structures as pre-TS, TS, and post-TS by measurement of their transmission coefficient ("probability to fold", or p(fold)) allows for rigorous conclusions regarding the structure of the folding nucleus and a full mechanistic analysis of the folding process. Through analysis of the TS, we observe a highly polarized nucleus in which many residues are solvent-exposed. Mechanistic analysis suggests the hydrophobic core forms largely after an early nucleation step. SH3 presents an ideal system for studying the nucleation-condensation mechanism and highlights the synergistic relationship between experiment and simulation in the study of protein folding.  相似文献   

12.
The SH3 domain folding transition state structure contains two well-ordered turn regions, known as the diverging turn and the distal loop. In the Src SH3 domain transition state, these regions are stabilized by a hydrogen bond between Glu30 in the diverging turn and Ser47 in the distal loop. We have examined the effects on folding kinetics of amino acid substitutions at the homologous positions (Glu24 and Ser41) in the Fyn SH3 domain. In contrast to most other folding kinetics studies which have focused primarily on non-disruptive substitutions with Ala or Gly, here we have examined the effects of substitutions with diverse amino acid residues. Using this approach, we demonstrate that the transition state structure is generally tolerant to amino acid substitutions. We also uncover a unique role for Ser at position 41 in facilitating folding of the distal loop, which can only be replicated by Asp at the same position. Both these residues appear to accelerate folding through the formation of short-range side-chain to backbone hydrogen bonds. The folding of the diverging turn region is shown to be driven primarily by local interactions. The diverging turn and distal loop regions are found to interact in the transition state structure, but only in the context of particular mutant backgrounds. This work demonstrates that studying the effects of a variety of amino acid substitutions on protein folding kinetics can provide unique insights into folding mechanisms which cannot be obtained by standard Phi value analysis.  相似文献   

13.
Many stably folded proteins are proposed to contain long, unstructured loops. A series of hybrid proteins (EbE1-4) containing the folded scaffold of photosystem I accessory protein E (PsaE), an SH3-like protein, and the 40-residue heme-binding loop of cytochrome b(5) was created to inspect the dependence of thermodynamic and kinetic parameters on the residues at the interface of folded and flexible regions. Compared to the simplest hybrid (EbE1), the chimeras differed by Gly insertions (EbE2, EbE3) or an asymmetric four-residue restructuring of loop termini (EbE4). NMR spectroscopy indicated that the chimeras retained the PsaE topology; native and unfolded state solubilities, however, were affected to varying degrees. Thermal and chemical denaturation experiments revealed that the EbE2 and EbE1 constructs resulted in a modest destabilization of the PsaE core, whereas apparent stability was increased by >5 kJ/mol in EbE4. EbE3 aggregated at microM concentrations and was not studied in detail. EbE4 populated two native states (N1 and N2), which differed by hydrophobic core packing and C-terminal interactions. At room temperature, the population ratio ( approximately 3-4:1) favored the state whose spectroscopic properties most resembled those of PsaE (N1). EbE4 also demonstrated altered folding kinetics, displaying multiple slow phases related to the population of intermediates and possibly N2. It was concluded that loop anchors can affect protein properties, including stability, via short-range effects on local structure and long-range communication with the packed hydrophobic core. Modification of the attachment points appears to be a possible stepping stone in the transition from one three-dimensional structure to another.  相似文献   

14.
Crk-II is a signaling adaptor protein that is involved in many cellular processes including apoptosis, proliferation, and differentiation. It has a modular domain architecture consisting of an Src homology 2 domain (SH2) followed by two Src homology 3 (SH3) domains. The structures and ligand-binding properties of the SH2 and the middle SH3 domains are well-characterized. Several studies suggest that the C-terminal SH3 domain plays an important regulatory role in the protein; however, no structural information is available on this domain, and relatively little is known about its binding partners. In the current work, we have solved the solution NMR structure of the C-terminal SH3 domain. The domain adopts the standard SH3 fold comprising a five-stranded beta barrel. In agreement with alignment and modeling studies, the structure indicates that the canonical-binding surface of the SH3 domain is unusually polar and suggests that this domain may not bind typical PXXP ligands or that it may bind them with reduced affinity. Thermodynamic and kinetic studies show that the domain folds in a reversible two-state manner and that the stability of the fold is similar to that observed for other SH3 domains. These studies offer some insight into the likely structural and thermodynamic consequences of point mutations in the cSH3 domain that are known to deregulate Crk-II function. Our results set the stage for a better understanding the role of the cSH3 domain in the context of the full-length protein.  相似文献   

15.
The thermal unfolding of three SH3 domains of the Tec family of tyrosine kinases was studied by differential scanning calorimetry and CD spectroscopy. The unfolding transition of the three protein domains in the acidic pH region can be described as a reversible two-state process. For all three SH3 domains maximum stability was observed in the pH region 4.5 < pH < 7.0 where these domains unfold at temperatures of 353K (Btk), 342K (Itk), and 344K (Tec). At these temperatures an enthalpy change of 196 kJ/mol, 178 kJ/mol, and 169 kJ/mol was measured for Btk-, Itk-, and Tec-SH3 domains, respectively. The determined changes in heat capacity between the native and the denatured state are in an usual range expected for small proteins. Our analysis revealed that all SH3 domains studied are only weakly stabilized and have free energies of unfolding which do not exceed 12–16 kJ/mol but show quite high melting temperatures. Comparing unfolding free energies measured for eukaryotic SH3 domains with those of the topologically identical Sso7d protein from the hyperthermophile Sulfolobus solfataricus, the increased melting temperature of the thermostable protein is due to a broadening as well as a significant lifting of its stability curve. However, at their physiological temperatures, 310K for mesophilic SH3 domains and 350K for Sso7d, eukaryotic SH3 domains and Sso7d show very similar stabilities. Proteins 31:309–319, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
17.
Lin CC  Chang JY 《Biochemistry》2007,46(12):3925-3932
Bovine alpha-interferon (BoINF-alpha) is a single polypeptide protein containing 166 amino acids, two disulfide bonds (Cys1-Cys99 and Cys29-Cys138), and five stretches of alpha-helical structure. The pathway of oxidative folding of BoINF-alpha has been investigated here. Of the eight possible one- and two-disulfide isomers, only two nativelike one-disulfide isomers, BoINF-alpha (Cys1-Cys99) and BoINF-alpha (Cys29-Cys138), predominate as intermediates along the folding pathway. More strikingly, alpha-helical structures formed almost quantitatively before any detectable formation of a disulfide bond. This is demonstrated by the observation that fully reduced BoINF-alpha (starting material of oxidative folding) and reduced carboxymethylated BoINF-alpha both exhibit alpha-helical structure content indistinguishable form that of native BoINF-alpha. The folding mechanism of BoINF-alpha appears to be compatible with the framework model, in which secondary structures fold first, followed by docking (compaction) of preformed secondary structural elements yielding the native structure.  相似文献   

18.
Protein folding kinetic data have been obtained for the marginally stable N-terminal Src homology 3 domain of the Drosophila protein drk (drkN SH3) in an investigation of the hydrodynamic properties of its folding transition state. Due to the presence of NMR resonances of both folded and unfolded states at equilibrium, kinetic data can be derived from NMR magnetization transfer techniques under equilibrium conditions. Kinetic analysis as a function of urea (less than approximately 1 M) and glycerol enables determination of alpha values, measures of the energetic sensitivity of the transition state to the perturbation relative to the end states of the protein folding reaction (the folded and unfolded states). Both end states have previously been studied experimentally by NMR spectroscopic and other biophysical methods in great detail and under nondenaturing conditions. Combining these results with the kinetic folding data obtained here, we can characterize the folding transition state without requiring empirical models for the unfolded state structure. We are thus able to give a reliable measure of the solvent-accessible surface area of the transition state of the drkN SH3 domain (4730 +/- 360 A(2)) based on urea titration data. Glycerol titration data give similar results and additionally demonstrate that folding of this SH3 domain is dependent on solvent viscosity, which is indicative of at least partial hydration of the transition state. Because SH3 domains appear to fold by a common folding mechanism, the data presented here provide valuable insight into the transition states of the drkN and other SH3 domains.  相似文献   

19.
We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our model to study the transition state ensemble of the SH3 fold family of proteins, a set of unstable conformations that fold to the protein native state with probability 1/2. We analyze the participation of each secondary structure element formed at the transition state ensemble. We also identify the folding nucleus of the SH3 fold and test extensively its importance for folding kinetics. We predict that a set of amino acid contacts between the RT-loop and the distal hairpin are the critical folding nucleus of the SH3 fold and propose a hypothesis that explains this result.  相似文献   

20.
Structural database-derived propensities for amino acids to adopt particular local protein structures, such as alpha-helix and beta-strand, have long been recognized and effectively exploited for the prediction of protein secondary structure. However, the experimental verification of database-derived propensities using mutagenesis studies has been problematic, especially for beta-strand propensities, because local structural preferences are often confounded by non-local interactions arising from formation of the native tertiary structure. Thus, the overall thermodynamic stability of a protein is not always altered in a predictable manner by changes in local structural propensity at a single position. In this study, we have undertaken an investigation of the relationship between beta-strand propensity and protein folding kinetics. By characterizing the effects of a wide variety of amino acid substitutions at two different beta-strand positions in an SH3 domain, we have found that the observed changes in protein folding rates are very well correlated to beta-strand propensities for almost all of the substitutions examined. In contrast, there is little correlation between propensities and unfolding rates. These data indicate that beta-strand conformation is well formed in the structured portion of the SH3 domain transition state, and that local structure propensity strongly influences the stability of the transition state. Since the transition state is known to be packed more loosely than the native state and likely lacks many of the non-local stabilizing interactions seen in the native state, we suggest that folding kinetics studies may generally provide an effective means for the experimental validation of database-derived local structural propensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号