首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seminal proteins from the Drosophila male accessory gland induce post-mating responses (PMR) in females. The PMR comprise behavioral and physiological changes that include increased egg laying, decreased receptivity to courting males, and changes in the storage and use of sperm. Many of these changes are induced by a “sex peptide” (SP) and are maintained by SP’s binding to, and slow release from, sperm. The accessory gland contains two secretory cell types with distinct morphological and developmental characteristics. Products of these “main” and “secondary” cells work interdependently to induce and maintain the PMR. To identify individual genes needed for the morphology and function of secondary cells, we studied iab-6cocu males, whose secondary cells have abnormal morphology and fail to provide products to maintain the PMR. By RNA-seq, we identified 77 genes that are downregulated by a factor of >5× in iab-6cocu males. By functional assays and microscopy, we tested 20 candidate genes and found that at least 9 are required for normal storage and release of SP in mated females. Knockdown of each of these 9 genes consequently leads to a reduction in egg laying and an increase in receptivity over time, confirming a role for the secondary cells in maintaining the long-term PMR. Interestingly, only 1 of the 9 genes, CG3349, encodes a previously reported seminal fluid protein (Sfp), suggesting that secondary cells may perform essential functions beyond the production and modification of known Sfps. At least 3 of the 9 genes also regulate the size and/or abundance of secondary cell vacuoles, suggesting that the vacuoles’ contents may be important for the machinery used to maintain the PMR.  相似文献   

2.
3.
The study of social behaviour within groups has relied on fixed definitions of an ‘interaction’. Criteria used in these definitions often involve a subjectively defined cut-off value for proximity, orientation and time (e.g. courtship, aggression and social interaction networks) and the same numerical values for these criteria are applied to all of the treatment groups within an experiment. One universal definition of an interaction could misidentify interactions within groups that differ in life histories, study treatments and/or genetic mutations. Here, we present an automated method for determining the values of interaction criteria using a pre-defined rule set rather than pre-defined values. We use this approach and show changing social behaviours in different manipulations of Drosophila melanogaster. We also show that chemosensory cues are an important modality of social spacing and interaction. This method will allow a more robust analysis of the properties of interacting groups, while helping us understand how specific groups regulate their social interaction space.  相似文献   

4.
Sexual dimorphism at the level of gene expression is common and well documented, but much less is known about how different cis-regulatory alleles interact with the different trans-regulatory environments present in males and females. Here we show that sex-specific effects of cis-regulatory variants are common in Drosophila.  相似文献   

5.
Protein misfolding has a key role in several neurological disorders including Parkinson's disease. Although a clear mechanism for such proteinopathic diseases is well established when aggregated proteins accumulate in the cytosol, cell nucleus, endoplasmic reticulum and extracellular space, little is known about the role of protein aggregation in the mitochondria. Here we show that mutations in both human and fly PINK1 result in higher levels of misfolded components of respiratory complexes and increase in markers of the mitochondrial unfolded protein response. Through the development of a genetic model of mitochondrial protein misfolding employing Drosophila melanogaster, we show that the in vivo accumulation of an unfolded protein in mitochondria results in the activation of AMP-activated protein kinase-dependent autophagy and phenocopies of pink1 and parkin mutants. Parkin expression acts to clear mitochondria with enhanced levels of misfolded proteins by promoting their autophagic degradation in vivo, and refractory to Sigma P (ref(2)P), the Drosophila orthologue of mammalian p62, is a critical downstream effector of this quality control pathway. We show that in flies, a pathway involving pink1, parkin and ref(2)P has a role in the maintenance of a viable pool of cellular mitochondria by promoting organellar quality control.  相似文献   

6.
Hunter Hill  Kent G. Golic 《Genetics》2015,201(2):563-572
We designed a system to determine whether dicentric chromosomes in Drosophila melanogaster break at random or at preferred sites. Sister chromatid exchange in a Ring-X chromosome produced dicentric chromosomes with two bridging arms connecting segregating centromeres as cells divide. This double bridge can break in mitosis. A genetic screen recovered chromosomes that were linearized by breakage in the male germline. Because the screen required viability of males with this X chromosome, the breakpoints in each arm of the double bridge must be closely matched to produce a nearly euploid chromosome. We expected that most linear chromosomes would be broken in heterochromatin because there are no vital genes in heterochromatin, and breakpoint distribution would be relatively unconstrained. Surprisingly, approximately half the breakpoints are found in euchromatin, and the breakpoints are clustered in just a few regions of the chromosome that closely match regions identified as intercalary heterochromatin. The results support the Laird hypothesis that intercalary heterochromatin can explain fragile sites in mitotic chromosomes, including fragile X. Opened rings also were recovered after male larvae were exposed to X-rays. This method was much less efficient and produced chromosomes with a strikingly different array of breakpoints, with almost all located in heterochromatin. A series of circularly permuted linear X chromosomes was generated that may be useful for investigating aspects of chromosome behavior, such as crossover distribution and interference in meiosis, or questions of nuclear organization and function.  相似文献   

7.
8.
9.
Animals use a number of different mechanisms to acquire crucial information. During social encounters, animals can pass information from one to another but, ideally, they would only use information that benefits survival and reproduction. Therefore, individuals need to be able to determine the value of the information they receive. One cue can come from the behaviour of other individuals that are already using the information. Using a previous extended dataset, we studied how individual decision-making is influenced by the behaviour of conspecifics in Drosophila melanogaster. We analysed how uninformed flies acquire and later use information about oviposition site choice they learn from informed flies. Our results suggest that uninformed flies adjust their future choices based on how coordinated the behaviours of the informed individuals they encounter are. Following social interaction, uninformed flies tended either to collectively follow the choice of the informed flies or to avoid it. Using social network analysis, we show that this selective information use seems to be based on the level of homogeneity of the social network. In particular, we found that the variance of individual centrality parameters among informed flies was lower in the case of a ‘follow’ outcome compared with the case of an ‘avoid’ outcome.  相似文献   

10.
As environments change, animals update their internal representations of the external world. New information about the environment is learned and retained whereas outdated information is disregarded or forgotten. Retroactive interference (RI) occurs when the retrieval of previously learned information is less available owing to the acquisition of recently acquired information. Even though RI is thought to be a major cause of forgetting, its functional significance is still under debate. We find that natural allelic variants of the Drosophila melanogaster foraging gene known to affect rover and sitter behaviour differ in RI. More specifically, rovers who were previously shown to experience greater environmental heterogeneity while foraging display RI whereas sitters do not. Rover responses are biased towards more recent learning events. These results provide an ecological context to investigate the function of forgetting via RI and a suitable genetic model organism to address the evolutionary relevance of cognitive tasks.  相似文献   

11.
12.
Common Mechanisms of Y Chromosome Evolution   总被引:5,自引:0,他引:5  
Steinemann M  Steinemann S 《Genetica》2000,109(1-2):105-111
Y chromosome evolution is characterized by the expansion of genetic inertness along the Y chromosome and changes in the chromosome structure, especially the tendency of becoming heterochromatic. It is generally assumed that the sex chromosome pair has developed from a pair of homologues. In an evolutionary process the proto-Y-chromosome, with a very short differential segment, develops in its final stage into a completely heterochromatic and to a great extends genetically eroded Y chromosome. The constraints evolving the Y chromosome have been the objects of speculation since the discovery of sex chromosomes. Several models have been suggested. We use the exceptional situation of the in Drosophila mirandato analyze the molecular process in progress involved in Y chromosome evolution. We suggest that the first steps in the switch from a euchromatic proto-Y-chromosome into a completely heterochromatic Y chromosome are driven by the accumulation of transposable elements, especially retrotransposons inserted along the evolving nonrecombining part of the Y chromosome. In this evolutionary process trapping and accumulation of retrotransposons on the proto-Y-chromosome should lead to conformational changes that are responsible for successive silencing of euchromatic genes, both intact or already mutated ones and eventually transform functionally euchromatic domains into genetically inert heterochromatin. Accumulation of further mutations, deletions, and duplications followed by the evolution and expansion of tandem repetitive sequence motifs of high copy number (satellite sequences) together with a few vital genes for male fertility will then represent the final state of the degenerated Y chromosome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The longstanding use of Drosophila as a model for cell and developmental biology has yielded an array of tools. Together, these techniques have enabled analysis of cell and developmental biology from a variety of methodological angles. Live imaging is an emerging method for observing dynamic cell processes, such as cell division or cell motility. Having isolated mutations in uncharacterized putative cell cycle proteins it became essential to observe mitosis in situ using live imaging. Most live imaging studies in Drosophila have focused on the embryonic stages that are accessible to manipulation and observation because of their small size and optical clarity. However, in these stages the cell cycle is unusual in that it lacks one or both of the gap phases. By contrast, cells of the pupal wing of Drosophila have a typical cell cycle and undergo a period of rapid mitosis spanning about 20 hr of pupal development. It is easy to identify and isolate pupae of the appropriate stage to catch mitosis in situ. Mounting intact pupae provided the best combination of tractability and durability during imaging, allowing experiments to run for several hours with minimal impact on cell and animal viability. The method allows observation of features as small as, or smaller than, fly chromosomes. Adjustment of microscope settings and the details of mounting, allowed extension of the preparation to visualize membrane dynamics of adjacent cells and fluorescently labeled proteins such as tubulin. This method works for all tested fluorescent proteins and can capture submicron scale features over a variety of time scales. While limited to the outer 20 µm of the pupa with a conventional confocal microscope, this approach to observing protein and cellular dynamics in pupal tissues in vivo may be generally useful in the study of cell and developmental biology in these tissues.  相似文献   

14.
In all eukaryotes, the ribosomal RNA genes are stably inherited redundant elements. In Drosophila melanogaster, the presence of a Ybb(-) chromosome in males, or the maternal presence of the Ribosomal exchange (Rex) element, induces magnification: a heritable increase of rDNA copy number. To date, several alternative classes of mechanisms have been proposed for magnification: in situ replication or extra-chromosomal replication, either of which might act on short or extended strings of rDNA units, or unequal sister chromatid exchange. To eliminate some of these hypotheses, none of which has been clearly proven, we examined molecular-variant composition and compared genetic maps of the rDNA in the bb(2) mutant and in some magnified bb(+) alleles. The genetic markers used are molecular-length variants of IGS sequences and of R1 and R2 mobile elements present in many 28S sequences. Direct comparison of PCR products does not reveal any particularly intensified electrophoretic bands in magnified alleles compared to the nonmagnified bb(2) allele. Hence, the increase of rDNA copy number is diluted among multiple variants. We can therefore reject mechanisms of magnification based on multiple rounds of replication of short strings. Moreover, we find no changes of marker order when pre- and postmagnification maps are compared. Thus, we can further restrict the possible mechanisms to two: replication in situ of an extended string of rDNA units or unequal exchange between sister chromatids.  相似文献   

15.
Heterochromatin has been traditionally regarded as a genomic wasteland, but in the last three decades extensive genetic and molecular studies have shown that this ubiquitous component of eukaryotic chromosomes may perform important biological functions. In D. melanogaster, about 30 genes that are essential for viability and/or fertility have been mapped to the heterochromatin of the major autosomes. Thus far, the known essential genes exhibit a peculiar molecular organization. They consist of single-copy exons, while their introns are comprised mainly of degenerate transposons. Moreover, about one hundred predicted genes that escaped previous genetic analyses have been associated with the proximal regions of chromosome arms but it remains to be determined how many of these genes are actually located within the heterochromatin. In this overview, we present available data on the mapping, molecular organization and function of known vital genes embedded in the heterochromatin of chromosomes 2 and 3. Repetitive loci, such as Responder and the ABO elements, which are also located in the heterochromatin of chromosome 2, are not discussed here because they have been reviewed in detail elsewhere.  相似文献   

16.
Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity.  相似文献   

17.
Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.  相似文献   

18.
Telomeres are obligatory chromosomal landmarks that demarcate the ends of linear chromosomes to distinguish them from broken ends and can also serve to organize the genome. In both budding and fission yeast, they cluster at the periphery of the nucleus, potentially to establish a compartment of silent chromatin. To gain insight into telomere organization in higher organisms, we investigated their distribution in interphase nuclei of Drosophila melanogaster. We focused on the syncytial blastoderm, an excellent developmental stage for live imaging due to the synchronous division of the nuclei at this time. We followed the EGFP-labeled telomeric protein HOAP in vivo and found that the 16 telomeres yield four to six foci per nucleus, indicative of clustering. Furthermore, we confirmed clustering in other somatic tissues. Importantly, we observed that HOAP signal intensity in the clusters increases in interphase, potentially due to loading of HOAP to newly replicated telomeres. To determine the rules governing clustering, we used in vivo imaging and fluorescence in situ hybridization to test several predictions. First, we inspected mutant embryos that develop as haploids and found that clustering is not mediated by associations between homologs. Second, we probed specifically for a telomere of novel sequence and found strong evidence against DNA sequence identity and homology as critical factors. Third, we ruled out predominance of intrachromosomal interactions by marking both ends of a chromosome. Based on these results, we propose that clustering is independent of sequence and is likely maintained by an as yet undetermined factor.  相似文献   

19.
Position-effect variegation (PEV) is the epigenetic disruption of gene expression near the de novo–formed euchromatin-heterochromatin border. Heterochromatic cis-inactivation may be accompanied by the trans-inactivation of genes on a normal homologous chromosome in trans-heterozygous combination with a PEV-inducing rearrangement. We characterize a new genetic system, inversion In(2)A4, demonstrating cis-acting PEV as well as trans-inactivation of the reporter transgenes on the homologous nonrearranged chromosome. The cis-effect of heterochromatin in the inversion results not only in repression but also in activation of genes, and it varies at different developmental stages. While cis-actions affect only a few juxtaposed genes, trans-inactivation is observed in a 500-kb region and demonstrates а nonuniform pattern of repression with intermingled regions where no transgene repression occurs. There is no repression around the histone gene cluster and in some other euchromatic sites. trans-Inactivation is accompanied by dragging of euchromatic regions into the heterochromatic compartment, but the histone gene cluster, located in the middle of the trans-inactivated region, was shown to be evicted from the heterochromatin. We demonstrate that trans-inactivation is followed by de novo HP1a accumulation in the affected transgene; trans-inactivation is specifically favored by the chromatin remodeler SAYP and prevented by Argonaute AGO2.  相似文献   

20.
Over the past 35 years, developmental geneticists have made impressive progress toward an understanding of how genes specify morphology and function, particularly as they relate to the specification of each physical component of an organism. In the last 20 years, male courtship behavior in Drosophila melanogaster has emerged as a robust model system for the study of genetic specification of behavior. Courtship behavior is both complex and innate, and a single gene, fruitless (fru), is both necessary and sufficient for all aspects of the courtship ritual. Typically, loss of male-specific Fruitless protein function results in male flies that perform the courtship ritual incorrectly, slowly, or not at all. Here we describe a novel requirement for fru: we have identified a group of cells in which male Fru proteins are required to reduce the speed of courtship initiation. In addition, we have identified a gene, Trapped in endoderm 1 (Tre1), which is required in these cells for normal courtship and mating behavior. Tre1 encodes a G-protein-coupled receptor required for establishment of cell polarity and cell migration and has previously not been shown to be involved in courtship behavior. We describe the results of feminization of the Tre1-expressing neurons, as well as the effects on courtship behavior of mutation of Tre1. In addition, we show that Tre1 is expressed in a sexually dimorphic pattern in the central and peripheral nervous systems and investigate the role of the Tre1 cells in mate identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号