首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
To improve clinical, neuropsychological and behavioural characterisation of the cerebrospinal fluid (CSF) biomarkers beta-amyloid((1-42)) protein (Abeta42), protein tau (tau) and tau phosphorylated at threonine 181 (P-tau181) across diagnostic dementia categories, a prospective study was set up. Patients with probable Alzheimer's disease (AD) (n=201), AD with cerebrovascular disease (CVD) (AD+CVD) (n=33), frontotemporal dementia (FTD) (n=27), dementia with Lewy bodies (DLB) (n=22) and healthy controls (n=148) were included. All patients underwent neuropsychological examination and behavioural assessment by means of a battery of behavioural assessment scales. CSF was obtained by lumbar puncture and levels of Abeta42, tau and P-tau181 were determined with commercially available ELISA kits. Negative correlations between CSF Abeta42 levels and aggressiveness (Spearman: r=-0.223; p=0.002) and positive correlations with age at inclusion (r=0.195; p=0.006), age at onset (r=0.205; p=0.003) and MMSE scores (r=0.198; p=0.005) were found in AD. In AD+CVD, CSF Abeta42 levels were correlated with MMSE (r=0.482; p=0.006), Hierarchic Dementia Scale (r=0.503; p=0.017) and Boston Naming Test (r=0.516; p=0.012) scores. In controls, age was positively correlated with CSF tau (r=0.465; p<0.001) and P-tau181 levels (r=0.312; p<0.001). CSF tau and P-tau181 levels correlated significantly in all groups, whereas CSF Abeta42 correlated with tau and P-tau181 levels in healthy controls only. Negative correlations between CSF Abeta42 levels and aggressiveness were found in AD patients. CSF Abeta42 seems to be a stage marker for AD (+/-CVD) given the positive correlations with neuropsychological test results suggesting that CSF Abeta42 might be of help for monitoring disease progression. Different correlations between age and CSF biomarker levels were obtained in healthy controls compared to AD patients, indicating that AD-induced pathophysiological processes change age-dependent regulation of CSF biomarker levels.  相似文献   

2.
Limited potential of electroencephalogram (EEG), magnetic resonance images (MRI) and cerebrospinal fluid (CSF) test for 14-3-3 protein in the clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) resulted in developments in diagnostic premortem tehniques. Recent studies provided evidence that magnetic resonance spectroscopy (MRS) and measurement of total-tau (T-tau) and phospho-tau (P-tau) may be useful to identify patients with CJD. We combined detected metabolic changes in the brain by MRS and measured T-tau and tau-pT181 by ELISA, and tau-pT231 by Westernblot in a patient with autopsy proven sCJD. Our results show that in contrast to negative CSF 14-3-3 protein, nonspecific EEG and MRI, MRS revealed metabolic alterations in regions of the brain that has appeared normal on MRI, and tau tests has shown measurable levels of phosphorylated and non-phosphorylated isoforms in CSF. We conclude that rapidly progressive dementia with negative 14-3-3 test and non-specific initial EEG and MRI must still be considered in the differential diagnosis of the sCJD. Combination of serial functional MRI along with MRS study and measurement of tau ratio could improve the early diagnosis of sCJD. The current case is the first attempt to study results of the use of MRS and tau tests in a case of sCJD with diagnostic dilemma.  相似文献   

3.
A major difference in the revised diagnostic criteria for Alzheimer’s disease (AD) is the incorporation of biomarkers to support a clinical diagnosis and allow the identification of preclinical AD due to AD neuropathological processes. However, AD-specific fluid biomarkers which specifically distinguish clinical AD dementia from other dementia disorders are still missing. Here we aimed to evaluate the disease-specificity of increased YKL-40 levels in cerebrospinal fluid (CSF) from AD patients with mild to moderate dementia (n = 49) versus Parkinson’s disease (PD) (n = 61) and dementia with Lewy bodies (DLB) patients (n = 36), and non-demented controls (n = 44). Second we aimed to investigate whether altered YKL-40 levels are associated with CSF levels of other inflammation-associated molecules. When correcting for age, AD patients exhibited 21.3%, 27.7% and 38.8% higher YKL-40 levels compared to non-demented controls (p = 0.0283), DLB (p = 0.0027) and PD patients (p<0.0001). The AD-associated increase in YKL-40 was not associated with CSF P-tau, T-tau or Aβ42. No relationship between increased YKL-40 and levels of the astrocytic marker glial-fibrillary acidic protein (GFAP), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1) and interferon gamma-induced protein 10 (IP-10) could be identified. Our results confirm previous reports of an age-associated increased in CSF YKL-40 levels and further demonstrate increased CSF YKL-40 in AD patients versus non-demented controls and patients with DLB or PD. The increase in YKL-40 levels in the AD patients was unrelated to the established CSF AD biomarkers and the inflammatory markers GFAP, MCP-1, IP-10 and IL-8, proposing YKL-40 as a marker of yet to be identified AD-related pathological processes.  相似文献   

4.
With the arrival of effective symptomatic treatments and the promise of drugs that may delay progression, we now need to identify Alzheimer’s disease (AD) at an early stage of the disease. To diagnose AD earlier and more accurately, attention has been directed toward peripheral biochemical markers. This article reviews promising potential cerebrospinal fluid (CSF) biomarkers for AD focussing on their role in clinical diagnosis. In particular, two biochemical markers, CSF total tau (t-tau) protein and the 42 amino acid form of β-amyloid (Aβ42), perform satisfactorily enough to achieve a role in the clinical diagnostic settings of patients with dementia together with the cumulative information from basic clinical work-up, genetic screening, and brain imaging. These CSF markers are particularly useful to discriminate early or incipient AD from age-associated memory impairment, depression, and some secondary dementias. In order to discriminate AD from other primary dementia disorders, however, more accurate and specific markers are needed. Preliminary evidence strongly suggests that quantification of tau phosphorylated at specific sites in CSF improves early detection, differential diagnosis, and tracking of disease progression in AD.  相似文献   

5.
The diagnosis of AD is still largely based on exclusion criteria of secondary causes and other forms of dementia with similar clinical pictures, than the diagnostic accuracy of AD is low. Improved methods of early diagnosis are needed, particularly because drugs treatment is more effective in the early stages of the disease. Recent research focused the attention to biochemical diagnostic markers (biomarkers) and according to the proposal of a consensus group on biomarkers, three candidate CSF markers reflecting the pathological AD processes, have recently been identified: total tau protein (t-tau), amyloid beta(1-42) protein (A beta42), and tau protein phosphorylated at AD-specific epitopes (p-tau). Several articles report reduced CSF levels of A beta42 and increased CSF levels of t-tau and p-tau in AD; the sensitivity and specificity of these data are able for discrimination of AD patients from controls. However, the specificity for other dementias is low. According to the literature analysis reported in the present review, we can conclude that the combination of the CSF markers and their ratios may significantly increase the specificity and the accuracy of AD diagnosis.  相似文献   

6.
《Biomarkers》2013,18(7):493-501
The diagnostic performance of several candidate cerebrospinal fluid (CSF) protein biomarkers in neuropathologically confirmed Alzheimer’s disease (AD), non-demented (ND) elderly controls and non-AD dementias (NADD) was assessed. Candidate markers were selected on the basis of initial two-dimensional gel electrophoresis studies or by literature review. Markers selected by the former method included apolipoprotein A-1 (ApoA1), haemopexin (HPX), transthyretin (TTR) and pigment epithelium-derived factor (PEDF), while markers identified from the literature included Aβ1-40, Aβ1-42, total tau, phosphorylated tau, α-1 acid glycoprotein (A1GP), haptoglobin, zinc α-2 glycoprotein (Z2GP) and apolipoprotein E (ApoE). Ventricular CSF concentrations of the markers were measured by enzyme-linked immunosorbent assay (ELISA). The concentrations of Aβ1-42, ApoA1, A1GP, ApoE, HPX and Z2GP differed significantly among AD, ND and NADD subjects. Logistic regression analysis for the diagnostic discrimination of AD from ND found that Aβ1-42, ApoA1 and HPX each had significant and independent associations with diagnosis. The CSF concentrations of these three markers distinguished AD from ND subjects with 84% sensitivity and 72% specificity, with 78% of subjects correctly classified. By comparison, using Aβ1-42 alone gave 79% sensitivity and 61% specificity, with 68% of subjects correctly classified. For the diagnostic discrimination of AD from NADD, only the concentration of Aβ1-42 was significantly related to diagnosis, with a sensitivity of 58%, specificity of 86% and 86% correctly classified. The results indicate that for the discrimination of AD from ND control subjects, measurement of a set of markers including Aβ1-42, ApoA1 and HPX improved diagnostic performance over that obtained by measurement of Aβ1-42 alone. For the discrimination of AD from NADD subjects, measurement of Aβ1-42 alone was superior.  相似文献   

7.
The overlapping clinical features of Alzheimer's disease (AD) and Dementia with Lewy bodies (DLB) make differentiation difficult in the clinical environment. Evaluating the CSF levels of biomarkers in AD and DLB patients could facilitate clinical diagnosis. CSF Visinin‐like protein‐1 (VILIP‐1), a calcium‐mediated neuronal injury biomarker, has been described as a novel biomarker for AD. The aim of this study was to investigate the diagnostic utility of CSF VILIP‐1 and VILIP‐1/Aβ1–42 ratio to distinguish AD from DLB. Levels of CSF VILIP‐1, t‐tau, p‐tau181P, Aβ1–42, and α‐synuclein were measured in 61 AD patients, 32 DLB patients, and 40 normal controls using commercial ELISA kits. The results showed that the CSF VILIP‐1 level had significantly increased in AD patients compared with both normal controls and DLB patients. The CSF VILIP‐1 and VILIP‐1/Aβ1–42 levels had enough diagnostic accuracy to allow the detection and differential diagnosis of AD. Additionally, CSF VILIP‐1 levels were positively correlated with t‐tau and p‐tau181P within each group and with α‐synuclein in the AD and control groups. We conclude that CSF VILIP‐1 could be a diagnostic marker for AD, differentiating it from DLB. The analysis of biomarkers, representing different neuropathologies, is an important approach reflecting the heterogeneous features of AD and DLB.

  相似文献   


8.
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most common causes of dementia in old people. They remain difficult to differentiate in practice because of lack of sensitivity and specificity of current clinical diagnostic criteria. Recent molecular and cellular advancements indicate that the use of cerebrospinal fluid markers may improve early detection and differential diagnosis of AD. Our objective in this study was to determine diagnostic accuracy of three cerebrospinal (CSF) markers: total tau protein (t-tau), tau protein phosphorylated on threonine 181 (p-tau181) and tau protein phosphorylated on serine 199 (p-tau199). Using commercially available ELISA kits concentrations of t-tau, p-tau181 and p-tau199 were analyzed in 12 patients with probable AD, 9 patients with VaD and 12 NC subjects. The median levels of all three markers were significantly higher in AD group versus VaD and NC groups. However, when the sensitivity levels were set to 85% or higher, only t-tau and p-tau199 satisfied consensus recommendations (specificity more than 75%) when differentiating AD from VaD. In conclusion, our preliminary data on a small group of selected subjects suggest that the CSF t-tau and p-tau199 levels are useful markers for differentiating AD from VaD.  相似文献   

9.
Recent genome-wide association studies of Alzheimer's disease (AD) have identified variants in BIN1, CLU, CR1 and PICALM that show replicable association with risk for disease. We have thoroughly sampled common variation in these genes, genotyping 355 variants in over 600 individuals for whom measurements of two AD biomarkers, cerebrospinal fluid (CSF) 42 amino acid amyloid beta fragments (Aβ(42)) and tau phosphorylated at threonine 181 (ptau(181)), have been obtained. Association analyses were performed to determine whether variants in BIN1, CLU, CR1 or PICALM are associated with changes in the CSF levels of these biomarkers. Despite adequate power to detect effects as small as a 1.05 fold difference, we have failed to detect evidence for association between SNPs in these genes and CSF Aβ(42) or ptau(181) levels in our sample. Our results suggest that these variants do not affect risk via a mechanism that results in a strong additive effect on CSF levels of Aβ(42) or ptau(181).  相似文献   

10.
The introduction of acetylcholine esterase inhibitors for symptomatic treatment of Alzheimer's disease, and the promise of drugs that may delay disease progression, has created a great need for reliable diagnostic tools. However, current criteria for the clinical diagnosis of AD are largely based on the exclusion of other dementia disorders and disease markers are lacking. Since biochemical changes in the brain are reflected in the cerebrospinal fluid (CSF), the search for diagnostic tools for AD has been directed toward CSF markers. CSF markers for AD should reflect the central pathogenic processes of the disorder, i.e. the mismetabolism of β-amyloid (Aβ) and the hyperphosphorylation of tau. Several studies have found that the CSF level of Aβ42 is decreased, and the CSF levels of total tau and phosphorylated tau are increased in AD as compared with normal controls. Thus, the sensitivity of these changes in AD is high. But changes in CSF-Ab42 and CSF-tau have been found in other neurodegenerative disorders and therefore, the specificity seems to be moderately high. Other potential markers that may increase the clinical diagnostic accuracy include the CSF/serum albumin ratio (for identification of blood–brain barrier damage related to disturbances in the small intracerebral vessels), CSF-sulfatide (for identification of ongoing demyelination related to white matter changes and CSF-neurofilament light protein (NFL) [for identification of ongoing axonal (tau and NFL) degeneration]. Use of the summarized information from analyses of several CSF biochemical markers, from the clinical examination, and from brain imaging (SPECT, CT/MRI) may increase the accuracy of the clinical diagnosis.  相似文献   

11.
Blood-based neurochemical diagnosis of vascular dementia: a pilot study   总被引:3,自引:0,他引:3  
Blood-based tests for the differential diagnosis of Alzheimer's disease (AD) are under intensive investigation and have shown promising results with regard to Abeta40 and Abeta42 peptide species in incipient AD. Moreover, plasma Abeta40 was suggested as an independent cerebrovascular risk factor candidate. These considerations prompted us to analyse a total of 72 plasma samples in vascular dementias (VAD, n = 15), AD with cerebrovascular disease (AD with CVD, n = 7), AD (n = 15), Parkinson's disease and Parkinson's disease dementia (PD/PDD, n = 20) and 15 patients with depression that served as controls (DC) for distinct plasma amyloid-beta (Abeta) peptide patterns. For the analysis of plasma we used immunoprecipitation followed by the quantitative Abeta-SDS-PAGE/immunoblot. For comparison, CSF tau and Abeta1-42 analyses were performed. The major outcome was an increase in Abeta1-40 in plasma of VAD paralleled by a decrease in the ratio of Abeta1-38/Abeta1-40. The ratio Abeta1-38/Abeta1-40 in plasma enabled contrasts of beyond 85% and 80% for discriminating VAD from DC and all other patients, respectively. In CSF, we confirmed the typical CSF biomarker constellation of increased tau and diminished Abeta1-42 levels for AD. The diagnostic accuracy of plasma Abeta1-38/Abeta1-40 for VAD resembled the accuracy of CSF biomarkers for AD. From the presented results, we consider the ratio of plasma Abeta1-38/Abeta1-40 peptides to be a blood-based biomarker candidate for VAD.  相似文献   

12.
Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.  相似文献   

13.
The xMAP-Luminex multiplex platform for measurement of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers using Innogenetics AlzBio3 immunoassay reagents that are for research use only has been shown to be an effective tool for early detection of an AD-like biomarker signature based on concentrations of CSF Aβ(1-42), t-tau and p-tau(181). Among the several advantages of the xMAP-Luminex platform for AD CSF biomarkers are: a wide dynamic range of ready-to-use calibrators, time savings for the simultaneous analyses of three biomarkers in one analytical run, reduction of human error, potential of reduced cost of reagents, and a modest reduction of sample volume as compared to conventional enzyme-linked immunosorbant assay (ELISA) methodology. Recent clinical studies support the use of CSF Aβ(1-42), t-tau and p-tau(181) measurement using the xMAP-Luminex platform for the early detection of AD pathology in cognitively normal individuals, and for prediction of progression to AD dementia in subjects with mild cognitive impairment (MCI). Studies that have shown the prediction of risk for progression to AD dementia by MCI patients provide the basis for the use of CSF Aβ(1-42), t-tau and p-tau(181) testing to assign risk for progression in patients enrolled in therapeutic trials. Furthermore emerging study data suggest that these pathologic changes occur in cognitively normal subjects 20 or more years before the onset of clinically detectable memory changes thus providing an objective measurement for use in the assessment of treatment effects in primary treatment trials. However, numerous previous ELISA and Luminex-based multiplex studies reported a wide range of absolute values of CSF Aβ(1-42), t-tau and p-tau(181) indicative of substantial inter-laboratory variability as well as varying degrees of intra-laboratory imprecision. In order to address these issues a recent inter-laboratory investigation that included a common set of CSF pool aliquots from controls as well as AD patients over a range of normal and pathological Aβ(1-42), t-tau and p-tau(181) values as well as agreed-on standard operating procedures (SOPs) assessed the reproducibility of the multiplex methodology and Innogenetics AlzBio3 immunoassay reagents. This study showed within-center precision values of 5% to a little more than 10% and good inter-laboratory %CV values (10-20%). There are several likely factors influencing the variability of CSF Aβ(1-42), t-tau and p-tau(181) measurements. In this review, we describe the pre-analytical, analytical and post-analytical sources of variability including sources inherent to kits, and describe procedures to decrease the variability. A CSF AD biomarker Quality Control program has been established and funded by the Alzheimer Association, and global efforts are underway to further define optimal pre-analytical SOPs and best practices for the methodologies available or in development including plans for production of a standard reference material that could provide for a common standard against which manufacturers of immunoassay kits would assign calibration standard values.  相似文献   

14.
Plasma β-amyloid protein (Aβ) isoforms are considered potential biomarkers for Alzheimer's disease (AD) and dementia. The relation between plasma and cerebrospinal fluid (CSF) levels of Aβ isoforms remains unclear. In order to identify possible correlations between Aβ levels in plasma and CSF we determined Aβ levels in time-linked plasma and CSF samples. Aβ concentrations in plasma (Aβ1–42 and AβN–42) and CSF (Aβ1–42) samples from 49 AD patients, 47 non-Alzheimer's disease dementia (NONAD) patients, 39 MCI patients and 29 controls were determined using a multi-parameter fluorimetric bead-based immunoassay using xMAP® technology (for plasma) and a conventional single-parameter ELISA (for CSF). Plasma Aβ1–42 concentrations did not correlate with CSF Aβ1–42 concentrations in the total study population, or in the different diagnostic groups. No correlations between plasma AβN–42 and CSF Aβ1–42 levels were found either. The CSF/serum albumin index did not show any significant differences between AD, NONAD, MCI and controls.These results suggest that the Aβ levels in plasma are independent of the Aβ levels in CSF both in dementia and controls. The fact that CSF and plasma Aβ do not correlate in patients as well as controls and no significant differences in plasma Aβ1–42 or AβN–42 between patients and controls can be detected hampers the diagnostic utility of the plasma Aβ levels as biomarkers for dementia.  相似文献   

15.
Lewczuk P  Wiltfang J 《Proteomics》2008,8(6):1292-1301
The aim of this review is to present current state of the art on the field of routine neurochemical dementia diagnostics (NDD) with a focus on cerebrospinal fluid (CSF) biomarkers: amyloid beta peptides, tau protein, and its phosphorylated form (pTau). After several years of experience, it is reasonably to postulate that CSF biomarkers analysis is an increasingly important tool within the early and differential diagnosis of dementia syndromes. Actual research activities are briefly discussed, too, including: (i) possibilities and limitations of the diagnosis of incipient Alzheimer's disease in preclinical stages (e.g., mild cognitive impairment), (ii) the role of multiplexing technologies in dementia biomarkers research, (iii) the role of biomarkers in differential diagnosis of dementia syndromes, (iv) approaches to improve analytical performance of available methods, and (v) research activities to identify dementia biomarkers in blood.  相似文献   

16.
The identification and validation of biomarkers for diagnosing Alzheimer's disease (AD) and other forms of dementia are increasingly important. To date, ELISA measurement of β-amyloid(1-42), total tau and phospho-tau-181 in cerebrospinal fluid (CSF) is the most advanced and accepted method to diagnose probable AD with high specificity and sensitivity. However, it is a great challenge to search for novel biomarkers in CSF and blood by using modern potent methods, such as microarrays and mass spectrometry, and to optimize the handling of samples (e.g. collection, transport, processing, and storage), as well as the interpretation using bioinformatics. It seems likely that only a combined analysis of several biomarkers will define a patient-specific signature to diagnose AD in the future.  相似文献   

17.
Alzheimer's Disease (AD) is the most prevalent form of dementia worldwide, yet the development of therapeutics has been hampered by the absence of suitable biomarkers to diagnose the disease in its early stages prior to the formation of amyloid plaques and the occurrence of irreversible neuronal damage. Since oligomeric Aβ species have been implicated in the pathophysiology of AD, we reasoned that they may correlate with the onset of disease. As such, we have developed a novel misfolded protein assay for the detection of soluble oligomers composed of Aβ x-40 and x-42 peptide (hereafter Aβ40 and Aβ42) from cerebrospinal fluid (CSF). Preliminary validation of this assay with 36 clinical samples demonstrated the presence of aggregated Aβ40 in the CSF of AD patients. Together with measurements of total Aβ42, diagnostic sensitivity and specificity greater than 95% and 90%, respectively, were achieved. Although larger sample populations will be needed to confirm this diagnostic sensitivity, our studies demonstrate a sensitive method of detecting circulating Aβ40 oligomers from AD CSF and suggest that these oligomers could be a powerful new biomarker for the early detection of AD.  相似文献   

18.

Background

Today, dementias are diagnosed late in the course of disease. Future treatments have to start earlier in the disease process to avoid disability requiring new diagnostic tools. The objective of this study is to develop a new method for the differential diagnosis and identification of new biomarkers of Alzheimer''s disease (AD) using capillary-electrophoresis coupled to mass-spectrometry (CE-MS) and to assess the potential of early diagnosis of AD.

Methods and Findings

Cerebrospinal fluid (CSF) of 159 out-patients of a memory-clinic at a University Hospital suffering from neurodegenerative disorders and 17 cognitively-healthy controls was used to create differential peptide pattern for dementias and prospective blinded-comparison of sensitivity and specificity for AD diagnosis against the Criterion standard in a naturalistic prospective sample of patients. Sensitivity and specificity of the new method compared to standard diagnostic procedures and identification of new putative biomarkers for AD was the main outcome measure. CE-MS was used to reliably detect 1104 low-molecular-weight peptides in CSF. Training-sets of patients with clinically secured sporadic Alzheimer''s disease, frontotemporal dementia, and cognitively healthy controls allowed establishing discriminative biomarker pattern for diagnosis of AD. This pattern was already detectable in patients with mild cognitive impairment (MCI). The AD-pattern was tested in a prospective sample of patients (n = 100) and AD was diagnosed with a sensitivity of 87% and a specificity of 83%. Using CSF measurements of beta-amyloid1-42, total-tau, and phospho181-tau, AD-diagnosis had a sensitivity of 88% and a specificity of 67% in the same sample. Sequence analysis of the discriminating biomarkers identified fragments of synaptic proteins like proSAAS, apolipoprotein J, neurosecretory protein VGF, phospholemman, and chromogranin A.

Conclusions

The method may allow early differential diagnosis of various dementias using specific peptide fingerprints and identification of incipient AD in patients suffering from MCI. Identified biomarkers facilitate face validity for the use in AD diagnosis.  相似文献   

19.
Cerebrospinal fluid (CSF) biomarkers T-Tau and Aβ(42) are linked with Alzheimer's disease (AD), yet little is known about the relationship between CSF biomarkers and structural brain alteration in healthy adults. In this study we examined the extent to which AD biomarkers measured in CSF predict brain microstructure indexed by diffusion tensor imaging (DTI) and volume indexed by T1-weighted imaging. Forty-three middle-aged adults with parental family history of AD received baseline lumbar puncture and MRI approximately 3.5 years later. Voxel-wise image analysis methods were used to test whether baseline CSF Aβ(42), total tau (T-Tau), phosphorylated tau (P-Tau) and neurofilament light protein predicted brain microstructure as indexed by DTI and gray matter volume indexed by T1-weighted imaging. T-Tau and T-Tau/Aβ(42) were widely correlated with indices of brain microstructure (mean, axial, and radial diffusivity), notably in white matter regions adjacent to gray matter structures affected in the earliest stages of AD. None of the CSF biomarkers were related to gray matter volume. Elevated P-Tau and P-Tau/Aβ(42) levels were associated with lower recognition performance on the Rey Auditory Verbal Learning Test. Overall, the results suggest that CSF biomarkers are related to brain microstructure in healthy adults with elevated risk of developing AD. Furthermore, the results clearly suggest that early pathological changes in AD can be detected with DTI and occur not only in cortex, but also in white matter.  相似文献   

20.
Various innovative diagnostic methods for Alzheimer’s disease (AD) have been developed in view of the increasing preva-lence and consequences of later-life dementia. Biomarkers in cerebrospinal fluid (CSF) and blood for AD are primarily based on the detection of components derived from amyloid plaques and neurofibrillary tangles (NFTs). Published reports on CSF and blood biomarkers in AD indicate that although biomarkers in body fluids may be utilized in the clinical diagnosis of AD, there are no specific markers that permit accurate and reliable diagnosis of early-stage AD or the monitoring of disease pro-gression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号