首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell extracts of Agrobacterium tumefaciens, immobilised in calcium alginate beads, had a 7-fold increase in N-carbamoylase (N-carbamylamino acid amidohydrolase E.C. 3.5.1) activity on reaction with N-carbamylglycine. The hydantoinase (dihydropyrimidinase E.C. 3.5.2.2) and N-carbamoylase activities remained stable over 4 weeks storage at 4°C relative to the non-immobilised enzymes, with the hydantoinase activity showing a 5-fold increase in activity relative to the non-immobilised hydantoinase. The pH optima of the immobilised hydantoinase and N-carbamoylase enzymes decreased to pH 7 and pH 8, respectively. The temperature optimum remained at 40°C for the N-carbamoylase enzyme while the hydantoinase activity was optimal at 50°C.  相似文献   

2.
Cell-free extract (crude extract) of Agrobacterium tumefaciens grown on d-glucuronate or d-glucarate converts d-glucarate and galactarate to a mixture of 2-keto-3-deoxy- and 4-deoxy-5-keto-d-glucarate. These compounds are then converted by partially purified crude extract to an intermediate tentatively identified as 2,5-diketoadipate. The same enzyme preparation further decarboxylates this intermediate to alpha-ketoglutarate semialdehyde, which is subsequently oxidized in a nicotinamide adenine dinucleotide-dependent reaction to alpha-ketoglutaric acid. Since A. tumefaciens converts d-glucuronic acid to d-glucarate, a pathway from d-glucuronate to alpha-ketoglutarate in A. tumefaciens was determined.  相似文献   

3.
Characterization of nonattaching mutants of Agrobacterium tumefaciens.   总被引:14,自引:17,他引:14       下载免费PDF全文
The first step in tumor formation by Agrobacterium tumefaciens is the site-specific binding of the bacteria to plant host cells. Transposon mutants of the bacteria which fail to attach to carrot suspension culture cells were isolated. These mutants showed no significant attachment to carrot cells with either microscopic or viable cell count assays of bacterial binding. The nonattaching mutants were all avirulent. When revertants of the mutants were obtained by enriching for bacteria which do bind to carrot cells, the bacteria were found to have regained the ability to bind to carrot cells and virulence simultaneously. These results suggest that the ability of the bacteria to bind to plant cells is required for virulence. Like the parent strain, all of the nonattaching mutants synthesized cellulose, but unlike the parent strain, they failed to aggregate carrot suspension culture cells. The transposon Tn5, which was used to obtain the mutants, was located on a 12-kilobase EcoRI fragment of the bacterial chromosomal DNA in all of the nonattaching mutants from strain C58. That the mutant phenotype was due to the Tn5 insertion was shown by cloning the Tn5-containing DNA fragment from the mutant bacteria and using it to replace the wild-type fragment in the parent strain by marker exchange. The resulting bacteria had the same mutant phenotype as the original Tn5 mutants; they did not attach to carrot cells, they did not cause the aggregation of carrot cells, and they were avirulent. No difference was seen between the parent strain and the nonattaching mutants in hydrophobicity, motility, flagella, fimbriae, beta-2-glucan content, size of lipopolysaccharide, or ability of the lipopolysaccharide to inhibit bacterial attachment to tissue culture cells. Differences were seen between the parent strain and the nonattaching mutants in the polypeptides removed from the bacteria during the preparation of spheroplasts. Three of the mutants were lacking a polypeptide of about 34 kilodaltons (kDa). One mutant was lacking the 34-kDa polypeptide and another polypeptide of about 38 kDa. The fifth mutant was lacking a polypeptide slightly smaller than the 34-kDa polypeptide missing in the other four mutants. These missing polypeptides all reappeared in the revertants of the mutants. Thus, bacterial binding to plant cells appears to require the presence of these polypeptides.  相似文献   

4.
Growth of Agrobacterium tumefaciens on d-glucuronic acid (GlcUA) or d-galacturonic acid (GalUA) induces formation of hexuronic acid dehydrogenase [d-aldohexuronic acid: nicotinamide adenine dinucleotide (NAD) oxidoreductase]. The dehydrogenase, which irreversibly converts GlcUA or GalUA to the corresponding hexaric acid with the concomitant reduction of NAD, but not of nicotinamide adenine dinucleotide phosphate was purified 60-fold by MnCl(2) treatment, (NH(4))(2)SO(4) fractionation, chromatography on diethylaminoethyl Sephadex and negative adsorption with Ca(3)(PO(4))(2) gel. The pH optimum is 8.0. Other uronic acids, aldohexoses, aldopentoses, and polyols, are not substrates. Reduced nicotinamide adenine dinucleotide is an inhibitor strictly competitive with NAD. Kinetic data indicate that the dehydrogenase induced by growth on GlcUA may not be identical with that induced by growth on GalUA.  相似文献   

5.
6.
7.
The synthesis of periplasmic beta(1-2)glucan is required for crown gall tumor formation by Agrobacterium tumefaciens and for effective nodulation of alfalfa by Rhizobium meliloti. The exoC (pscA) gene is required for this synthesis by both bacteria as well as for the synthesis of capsular polysaccharide and normal lipopolysaccharide. We tested the possibility that the pleiotropic ExoC phenotype is due to a defect in the synthesis of an intermediate common to several polysaccharide biosynthetic pathways. Cytoplasmic extracts from wild-type A. tumefaciens and from exoC mutants of A. tumefaciens containing a cloned wild-type exoC gene synthesized in vitro UDP-glucose from glucose, glucose 1-phosphate, and glucose 6-phosphate. Extracts from exoC mutants synthesized UDP-glucose from glucose 1-phosphate but not from glucose or glucose 6-phosphate. Membranes from exoC mutant cells synthesized beta(1-2)glucan in vitro when exogenous UDP-glucose was added and contained the 235-kilodalton protein, which has been shown to carry out this synthesis in wild-type cells. We conclude that the inability of exoC mutants to synthesize beta(1-2)glucan is due to a deficiency in the activity of the enzyme phosphoglucomutase (EC 2.7.5.1), which in wild-type bacteria converts glucose 6-phosphate to glucose 1-phosphate, an intermediate in the synthesis of UDP-glucose. This interpretation can account for all of the deficiencies in polysaccharide synthesis which have been observed in these mutants.  相似文献   

8.
In contrast to wild-type Agrobacterium tumefaciens strains, β-1,2-glucan-deficient chvB mutants were found to be unable to attach to pea root hair tips. The mutants appeared to produce rhicadhesin, the protein that mediates the first step in attachment of Rhizobiaceae cells to plant root hairs, but the protein was inactive. Both attachment to root hairs and virulence of the ChvB mutants could be restored by treatment of the plants with active rhicadhesin, whereas treatment of plants with β-1,2-glucan had no effect on attachment or virulence. Moreover, nodulation ability of a chvB mutant carrying a Sym plasmid could be restored by pretreatment of the host plant with rhicadhesin. Apparently the attachment-minus and avirulence phenotype of chvB mutants is caused by lack of active rhicadhesin, rather than directly being caused by a deficiency in β-1,2-glucan synthesis. The results strongly suggest that rhicadhesin is essential for attachment and virulence of A. tumefaciens cells. They also indicate that the mechanisms of binding of Agrobacterium and Rhizobium bacteria to plant target cells are similar, despite differences between these target cells.  相似文献   

9.
Abstract The biosynthesis of the hydantoin-hydrolysing enzymes hydantoinase and N -carbamyl amino acid amidohydrolase from Agrobacterium sp. IP I-671, a Gram-negative bacterium used as a biocatalyst for the production of enantiomerically pure ( R ) amino acids, was found to be highly inducible by the addition to the cultivation medium of different non-metabolizable thiolated hydantoins or pyrimidines. Among these inducers the hexacyclic pyrimidine thioderivatives were more potent than all the pentacyclic thiohydantoin compounds. Addition of 2,4-thiouracil to the cultures, at a rate of 0.1 g (g cell dry mass)−1, led to no appreciable growth inhibition and yielded a biocatalyst exhibiting a 40-fold higher hydantoinase and a 15-fold higher N -carbamyl amino acid amidohydrolase activity than the corresponding inducer-free cultures.  相似文献   

10.
Chloroplast transformation by Agrobacterium tumefaciens   总被引:5,自引:2,他引:5       下载免费PDF全文
A chimeric gene consisting of the promoter region of the nopaline synthase gene (Pnos) fused to the coding sequence of the chloramphenicol acetyltransferase gene (cat gene) of Tn9 was introduced by co-cultivation in tobacco protoplasts followed by selection with 10 μg/ml chloramphenicol. The chloramphenicol-resistant plants derived from these selected calli were unable to transmit the CmR phenotype through pollen. A typically maternal inheritance pattern was observed. Southern blot analysis showed that the chimeric Pnos-cat gene was present in the chloroplasts of these resistant plants. Furthermore, the chloramphenicol acetyltransferase activity was shown to be associated with the chloroplast fraction. These observations are the first proof that the Agrobacterium Ti-plasmid vectors can be used to introduce genes in chloroplasts.  相似文献   

11.
The molecular basis of complementation by a mixture of two different types of octopine T-region mutants (LBA4060 and LBA4210) was studied. Six randomly chosen cellular clones derived from a tumor obtained after mixed infection were analyzed for their T-DNA content via Southern blot hybridization. The clones appeared to contain T-DNA that originated from each of both mutants, indicating that they developed from doubly infected single cells. Genetic complementation, therefore, might explain at least in part the observed complementation phenomenon. However, complementation as a result of cross-feeding between separately transformed cells could not be excluded. Following protoplast isolation, small aggregates might have formed that developed into the clones analyzed.  相似文献   

12.
Mutants of Agrobacterium tumefaciens which affect virulence or the ability to catabolize octopine were isolated after Tn5-induced mutagenesis. Of 8,900 colonies tested, 7 mutants with Tn5 insertions in a specific region of other Ti plasmid unable to catabolize octopine were isolated. Thirty-seven mutants affected in tumorigenesis resulted from insertions in the Ti plasmid and the Agrobacterium chromosome. Of these mutations, 12 were chromosomal and 25 mapped on the plasmid. Twenty-three mapped within a 20-megadalton region, which is distinct from the Ti plasmid sequences found stably integrated into the plant cell genome T-deoxyribonucleic acid). Included in these were mutants that were either a virulent or produced tumors with unusual morphologies. Three mutants contained insertions in the T-deoxyribonucleic acid. These three mutants incited tumors which synthesized octopine but had an altered morphology due to either extensive proliferation of shoots or roots from the tumor callus. Three additional mutants not caused by Tn5 contained mutations in the Ti plasmid.  相似文献   

13.
Bacteriophages GS2 and GS6 for Agrobacterium tumefaciens were shown by electron microscopy to adsorb to flagella. This specificity was confirmed by the finding that phage-resistant mutants were nonmotile. Such mutants retained tumor-inducing virulence and ability to attach to plant cells, indicating that motility was not required for these properties. Both phages had contractile tails and appeared similar in the electron microscope.  相似文献   

14.
A series of experiments are presented that have been performed to observe the interactions between Agrobacterium tumefaciens strains mutated in the T-DNA genes involved in indoleacetic acid and cytokinin biosynthesis and several Nicotiana species and hybrids. Infections were induced on leaf cuttings of Nicotiana debneyi, N. knightiana, N. clevelandii, N. bigelovii var bigelovii, N. bigelovii var quadrivalvis, N. glauca, N. langsdorffii, the amphidiploid tumorous hybrid N. glauca × N. langsdorffii, and a nontumorous mutant of it. The effect of deletions of the Ti plasmid varied according to plant genotype. Insertion mutants in iaaM and iaaH suppressed tumor formation in N. langsdorffii, reduced it in N. bigeloviivar quadrivalvis, had no effect in N. glauca and the two amphidiploid hybrids, and promoted tumorigenesis when compared to the wild-type Agrobacterium strain B6S3 in N. bigelovii N. debneyi, and N. knightiana. The same mutations induced shoot formation in N. glauca, increased it in N. debneyi, and suppressed root formation in N. knightiana. On the other hand, an insertion mutation of the isopentenyl transferase gene (ipt-) had no effect in N. bigelovii var quadrivalvis, N. debneyi, the tumorous hybrid, suppressed tumor formation in N. langsdorffii, and inhibited it in N. glauca, the nontumorous hybrid, N. bigelovii var bigelovii, and N. knightiana. Insertion in ipt suppressed shoot formation in the nontumorous hybrid and inhibited it in the nontumorous amphidiploid and N. debneyi, while promoting root formation in N. glauca and N. debneyi. The suggestion of the existence of specific hormone equilibria necessary for the shift to each morphogenetic pattern was supported by experiments with exogenous hormone treatments of three genotypes (N. glauca, N. langsdorffii, and the nontumorous N. glauca × N. langsdorffii).  相似文献   

15.
N-Carbamoyl-d-amino acid amidohydrolase is an industrial biocatalyst to hydrolyze N-carbamoyl-d-amino acids for producing valuable d-amino acids. The crystal structure of N-carbamoyl-d-amino acid amidohydrolase in the unliganded form exhibits a alpha-beta-beta-alpha fold. To investigate the roles of Cys172, Asn173, Arg175, and Arg176 in catalysis, C172A, C172S, N173A, R175A, R176A, R175K, and R176K mutants were constructed and expressed, respectively. All mutants showed similar CD spectra and had hardly any detectable activity except for R173A that retained 5% of relative activity. N173A had a decreased value in kcat or Km, whereas R175K or R176K showed high Km and very low kcat values. Crystal structures of C172A and C172S in its free form and in complex form with a substrate, along with N173A and R175A, have been determined. Analysis of these structures shows that the overall structure maintains its four-layer architecture and that there is limited conformational change within the binding pocket except for R175A. In the substrate-bound structure, side chains of Glu47, Lys127, and C172S cluster together toward the carbamoyl moiety of the substrate, and those of Asn173, Arg175, and Arg176 interact with the carboxyl group. These results collectively suggest that a Cys172-Glu47-Lys127 catalytic triad is involved in the hydrolysis of the carbamoyl moiety and that Arg175 and Arg176 are crucial in binding to the carboxyl moiety, hence demonstrating substrate specificity. The common (Glu/Asp)-Lys-Cys triad observed among N-carbamoyl-d-amino acid amidohydrolase, NitFhit, and another carbamoylase suggests a conserved and robust platform during evolution, enabling it to catalyze the reactions toward a specific nitrile or amide efficiently.  相似文献   

16.
Summary Mutants with Tn5 insertions in the vir region of the Agrobacterium tumefaciens TiC58 plasmid are unable to form crown-gall tumors. Complementation tests of these vir region mutants were carried out by constructing merodiploids in a recombination-deficient strain. Each merodiploid possessed a mutant TiC58 plasmid and a recombinant plasmid containing either the homologous wild-type DNA region or the homologous region containing a second Tn5 insertion. The analysis identified six complementation groups. Mutations in one of these complementation groups were not complemented in trans and represent a cis-dominant locus. The mutation in one complementation group showed variation in host range.  相似文献   

17.
N-Carbamoyl D-amino acid amidohydrolase (D-NCAase) that catalyzes the stereospecific hydrolysis of N-carbamoyl D-amino acids to their corresponding D-amino acids is valuable in pharmaceutical industry. Agrobacterium radiobacter D-NCAase is sensitive to oxidative damage by hydrogen peroxide. To investigate the role of methionine residues in oxidative inactivation, each of the nine methionine residues in A. radiobacter D-NCAase was substituted with leucine, respectively, by site-directed mutagenesis. Except for two mutants (Met5Leu and Met31Leu) with similar activities, seven mutants (Met73Leu, Met167Leu/Met169Leu, Met184Leu, Met220Leu, Met239Leu, Met244Leu, and Met239Leu/Met244Leu) were found to have reduced activities. In the presence of H(2)O(2), three mutants (Met239Leu, Met244Leu, and Met239Leu/Met244Leu) with substitution of highly solvent-accessible methionines by leucines retained their activities. The other mutants were also considerably resistant to chemical oxidation than was the wild-type enzyme. Thus, substitution of solvent-accessible methionine residues with leucine to enhance oxidative stability of D-NCAase is practical but might be with compromised activity.  相似文献   

18.
19.
20.
The occurrence of the novel regulatory nucleotide bis(3',5')-cyclic diguanylic acid (c-di-GMP) and its relation to cellulose biogenesis in the plant pathogen Agrobacterium tumefaciens was studied. c-di-GMP was detected in acid extracts of 32P-labeled cells grown in various media, and an enzyme responsible for its formation from GTP was found to be present in cell-free preparations. Cellulose synthesis in vivo was quantitatively assessed with [14C]glucose as a tracer. The organism produced cellulose during growth in the absence of plant cells, and this capacity was retained in resting cells. Synthesis of a cellulosic product from UDP-glucose in vitro with membrane preparations was markedly stimulated by c-di-GMP and its precursor GTP and was further enhanced by Ca2+. The calcium effect was attributed to inhibition of a c-di-GMP-degrading enzyme shown to be present in the cellulose synthase-containing membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号