首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A method is described for culturing plants at extremely low nutrient concentrations. Using a Braun infusion pump, a fixed amount of nitrate or ammonium was supplied continuously to plants growing in a culture vessel at a rate limiting the uptake of the plants. At a very low nitrogen concentration an equilibrium was established where uptake rate of the plants is equal to the rate of supply by the infusion pump. The nitrogen concentrations reached appeared to be in the order of 1 μM. The method compared the nitrate uptake byHypochaeris radicata L.ssp.radicata, H. radicata ssp.ericetorum Van Soest andUrtica dioica L. and ammonium uptake byH. radicata ssp.radicata andH. radicata ssp.ericetorum. Plants were cultivated in monocultures or in mixed cultures (two species per culture vessel). For the mixed cultures competition for nitrate (or ammonium) between the species was maintained for long periods. The capacities of the uptake systems of two subspecies ofH. radicata from places different in nitrogen supply and pH were adapted equally well to both low nitrate and low ammonium concentrations. Apparently factors other than nitrogen uptake play a part in the distribution of the subspecies. The capacity of the uptake system ofU. dioica, a nitrophilous species, was lower than that ofH. radicata ssp.radicata, a species from places poorer in nitrogen. This difference is related to the different distribution of the two species in the field. The present results are compared with those of previous experiments where Km and Vmax were measured and the significance of both parameters is discussed.  相似文献   

2.
Summary Uptake and assimilation of nitrate by two subspecies ofHypochaeris radicata L. were investigated under laboratory conditions as well as in the field.H. radicata ssp.radicata grows on relatively nitrogen-richer soils thanH. radicata ssp.ericetorum. Attempts were made to relate nitrate uptake and nitrate assimilation in the two subspecies to their different distribution in the field.No differences between the two subspecies with respect to nitrate uptake and nitrate assimilation were observed under laboratory conditions. In plants from the field intact tissue nitrate reductase was higher in ssp.radicata than in ssp.ericetorum. The nitrate reductase activity of both subspecies responded positively to nitrate addition.The significance of nitrate uptake capacity and the level of nitrate reductase for the distribution of plants in the field is here discussed.Grassland species research group, publ. no.15.  相似文献   

3.
Summary The present paper is part of a series of papers comparing two ecologically distinct subspecies ofHypochaeris radicata L.Hypochaeris radicata ssp.radicata grows in more fertile soils thanH. radicata ssp.ericetorum.The dry-weight yield of plants grown from seeds was measured after a 25 days culture period on varying levels of nitrate. Roots and shoots were analyzed for total organic nitrogen and free nitrate. Dry-weight yield showed an almost identical response over the whole range of nitrate concentrations used. The chemical analysis did not reveal differences between the subspecies that could explain the distribution in the field. In a second experiment the growth rate of the two subspecies was measured under optimal nitrate supply during a two month period. Both subspecies exhibited initially the same relative growth rate but one month after sowing the growth rate of both subspecies declined, with a sharper decline in ssp.ericetorum resulting in an 82 per cent difference in dry-weight between both subspecies two months after sowing. Some pronounced formative differences became evident. Shoot to root ratio of ssp.ericetorum showed little response to increasing nitrate concentrations whereas ssp.radicata was clearly responsive in this respect.The contribution of the tap root in total plant dry-weight was relatively higher in ssp.Ericetorum. The decline in growth rate and the formative differences can explain the absence of ssp.ericetorum from nutrient rich soils. when grown on ammonium ssp.radicata had a slightly but not significantly higher yield than ssp.ericetorum. The difference was even greater at low pH. It is concluded that both subspecies are adapted to ammonium nutrition at pH 4.5 as well as at pH 6 and that the absence of ssp.radicata from acidic soils cannot be explained by the low pH. The possibility that both subspecies have different abilities to reduce their growth when nitrate resources become limiting, and yet remain capable for further growth and reproduction is discussed.Grassland species research group, publ. no.16.  相似文献   

4.
Summary Two subspecies ofHypochaeris radicata were compared with respect to differences in drought tolerance. The soil water content of the sites ofH. radicata ssp. ericetorum Van Soest was always lower than that ofH. radicata L. ssp.radicata throughout a great part of the growing season. Two water culture experiments were conducted at different light intensities. Water stress was induced by addition of NaCl to the culture solution. Both subspecies accumulated free proline andmyo-inositol during water stress. The results are compared with those of field observations. In all experiments with stress application ssp.radicata showed heavier wilting symptoms than ssp.ericetorum, concomittantly with a lower osmotic potential of the cell sap, a higher percentage of dry-weight and irreversible desiccation of older leaves in some experiments after stress application. The observed effects are attributed to the higher transpiration rate maintained by ssp.radicata during stress. Free proline accumulation depended on the severity of the internal stress rather than on the applied level of external stress. At low light intensity the stress resulted in a significantly higher proline accumulation in ssp.ericetorum than in ssp.radicata whereas at high light intensity this was the reverse. No differences inmyo-inositol accumulation were observed in the water culture experiments. Since ssp.ericetorum occurs in a nitrogen poor environment, the effect of nitrogen deprivation on accumulation of free proline andmyo-inositol was investigated. Both subspecies tended to accumulate less proline under such conditions especially ssp.radicata. Accumulation ofmyo-inositol was not favoured by nitrogen deprivation in the water culture experiments. Neither of the subspecies accumulated proline during the sampling period in the field presumably as a result of the wet summer. Leaves of whole plants collected in the field and subsequently subjected to water deprivation showed a high capacity to accumulate free proline. The level ofmyo-inositol in the field was higher in ssp.ericetorum than in either ssp.radicata or control plants in the water culture experiments. When the cytoplasmic volume is estimated as 10% of the total cell volume, free proline andmyo-inositol account for 44–69% of the osmotic potential. It is concluded that ssp.ericetorum is better adapted to the drier environment by its higher capacity to accumulate proline and reduce transpiration during stress. Grassland species research group, publication no41.  相似文献   

5.
Summary Numbers of autotrophic nitrifiers in the rhizosphere, and thein vivo nitrate reductase activity (NRA) in the leaves of individual plants ofPlantago lanceolata were determined in plants at two contrasting sites. In a dune grassland, high numbers of nitrifiers were present in the rhizosphere, and significant NRA was detected in the leaves. During dry periods nitrate utilization sometimes was depressed. In a wet hayfield, on peat soil, very low numbers of nitrifiers were found in the rhizosphere. Also the NRA was low. In the wet habitat, the NRA in the leaves of some fen species, containing aerenchyma in the roots, was higher than that ofP. lanceolata, not containing aerenchyma.Grassland Species Research Group. Publication No. 105.  相似文献   

6.
The species Urtica dioica L., Plantago major ssp. major L., Plantago lanceolata L., Hypochaeris radicata L. ssp. radicata and Hypochaeris radicata ssp. ericetorum Van Soest were grown under high and low nutrient conditions (1/4 Hoagland and 2% of 1/4 Hoagland further called the 100% and 2% treatment, containing 3.75 mM NO-3 and 0.075 mM NO-3, respectively). After a certain period half of the plants were transferred from low to high or high to low nutrients, yielding the 100%/2% and the 2%/100% treatments. The kinetics of nitrate uptake in the range of system I of the five species grown under the different nutrient conditions were measured during a three week experimental period. The nitrate uptake of all the species showed the characteristic features of Michaelis-Menten kinetics. Under low nutrient conditions the apparent Vmax of U. dioica expressed per g dry root was lower than under high nutrient conditions. For H. radicata ssp. radicata and for H. radicata ssp. ericetorum the reverse was found. The Vmax values of P. major ssp. major were almost the same for the two treatments. The apparent Vmax in young plants of P. lanceolata was higher in the 100% treatment than in 2%; whereas the reverse was found in mature plants. The results are explained in relation to the relative growth rate, the shoot to root ratio and the natural environment of the species. The apparent Km values were not influenced by the different treatments. Differences in Km between the species, if any, were very small. It is suggested that the Vmax is a more important parameter for the distribution of plant species in the field than the Km. The rate of nitrogen accumulation was calculated from growth data and the contents of nitrate and reduced nitrogen. It is concluded that the Vmax of system I for nitrate uptake in most cases was sufficient to explain the observed growth rates.  相似文献   

7.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

8.
Summary Nitrate reductase activity (NRA), nitrate content and biomass components of leaflets, leaf stalks, old stem, current-year stem and roots of ash trees (Fraxinus excelsior L.) growing in their natural habitats were investigated. In addition, NRA, total nitrogen and nitrate concentration were analyzed in the leaves and roots of ash trees from four different field sites. The highest NRA per gram biomass and also per total compartment biomass was found in the leaflets, even though root biomass was much higher than total leaflet biomass. The highest nitrate concentrations were found in the leaf stalks. Correlations between nitrate availability in the soil and NRA in leaves were not significant due to high variability of the actual soil nitrate concentrations. The seasonal variation in foliar NRA, nitrate concentration and total nitrogen concentration is much smaller in F. excelsior than reported for herbaceous species and is mainly caused by changes in the actual soil nitrate availability and by senescence of the leaves.  相似文献   

9.
Anin situ method, derived from anin vivo method, was used to determine nitrate reductase activity (NRA) in:i) excised barley and corn shoots and excised soybean leaves during a N-depletion experiment and; ii) roots and shoots of N-depleted barley and corn seedlings during induction of nitrate, reductase (NR). Nitrate reduction, calculated from thesein situ RNA measurements, was compared with estimates of each organ's nitrate reduction in light aerobic conditions from NO 3 consumption and a15N model (Gojonet al., 1986b). Thein situ RNA of roots strongly underestimated their15NO 3 reduction. In contrast, in barley and corn shoots and in the first trifoliolate leaves from 26-day-old, soybean, thein situ NRA assay gave a fair approximation of the true NO 3 reduction rate (relative differences ranging from −14 to +32%). In young soybean leaves (from 20-day-old plants), however, thein situ NRA strongly underestimated the actual NO 3 reduction. The physiological significance of thein situ NRA assay in shoots and roots, and its value for field studies are discussed from these results.  相似文献   

10.
Summary Thein vivo nitrate reductase activity (NRA) was determined inAlnus glutinosa plants grown nonsymbiotically on ammonium, nitrate, a combination of both, or symbiotically with atmospheric nitrogen as the only nitrogen source. Root NRA was absent when ammonium or atmospheric nitrogen was the nitrogen source. With nitrate in the culture solution the roots showed a high NRA. However, the leaf NRA behaved quite differently: with negligible activities on all nitrogen sources except atmospheric nitrogen. The foliar NRA measured, however, is likely not due to the activity of the plant but of microbial origin. Methods commonly used to facilitate produced nitrite to leak out of the tissue, such as addition of propanol and cutting the plant material, did not increase the nitrite release from the leaves. A turbidity developed when testing the samples for nitrite which was positively correlated with the NRA. Populations of microorganisms in the phyllosphere did not differ between the nutritional treatments. Bacteria, able to grow on a low-nitrogen medium, were present on the leaves. Nitrifiers could not be detected. The bacteria on the leaves appear to produce nitrite when incubated with leaf material. Grassland Species Research Group, Publication no. 106  相似文献   

11.
L. Högbom  P. Högberg 《Oecologia》1991,87(4):488-494
Summary Current and maximally induced nitrate reductase activity (NRA), total-N, nitrate, K, P, Ca, Mg, Mo and sucrose in leaves ofDeschampsia flexuosa was measured three times during the vegetation period in forests along a deposition gradient (150 km) in south Sweden, in north Sweden where the nitrogen deposition is considerably lower, and at heavily N-fertilized plots. In addition, the interaction between nitrogen nutrition and light was studied along transects from clearings into forest in both south and north Sweden. Plants from sites with high nitrogen deposition had elevated current NRA compared to plants from less polluted sites, indicating high levels of available soil nitrate at the former. Current NRA and total N concentration in grass from sites with high deposition resembled those found at heavily N-fertilized plots. Under such circumstances, the ratio current NRA: maximally induced NRA as well as the concentration of nitrate was high, while the concentration of sucrose was low. This suggests that the grass at these sites was already utilizing a large portion of its capacity to assimilate nitrate. Light was found to play an important role in the assimilation of nitrate; leaf concentration of sucrose was found to be negatively correlated with both nitrate and total N. Consequently, grass growing under dense canopies in south Sweden is not able to dilute N by increasing growth. The diminished capacity of the grass to assimilate nitrate will increase leaching losses of N from forests approaching N saturation.  相似文献   

12.
To study aspects of the ecology of grassland species, in a comparative experiment, plants ofP. lanceolata andP. major were grown in pots in a greenhouse, and subjected to a gradual nitrate depletion for several weeks. Control plants were weekly supplied with nitrate. Growth, leaf appearance and disappearance, concentrations of cations and inorganic anions, soluble and insoluble reduced nitrogen concentrations,in vivo nitrate reductase activity (NRA) and the concentration of non-structural carbohydrates in several parts of the plants were followed. Depletion of nitrate caused a reduction of shoot growth, both in biomass and number of leaves. Withering of leaves increased. Accumulation of root dry matter was little (P. lanceolata), or not (P. major) affected. The concentration of reduced nitrogen in all tissues also decreased, both that of the soluble and that of the insoluble fraction. As a result, nitrogen use efficiency (NUE, g dry matter produced per mmol N incorporated) increased by nitrate depletion. NRA was higher in the roots than in the leaves, and decreased with increasing nitrate depletion. In control plants, nitrate became also limiting. This resulted in decreasing nitrate concentrations in leaves and roots. In the leaves, the decrease in nitrate concentration was preceded by a decrease in NRA. The decrease of the nitrate concentration was parallelled by an increase in the concentration of soluble sugar. No major differences in the response towards nitrate depletion were observed between the two species. Grassland Species Research Group, publication no. 129  相似文献   

13.
Three isolates ofA. tenuis isolated from the diseased leaves ofMangifera indica l. Musa paradisiaca l. andPsidium guajava l. were investigated. They were grown on different sources of nitrogen viz., potassium nitrate, sodium nitrate, calcium nitrate, ammonium nitrate, sodium nitrite, ammonium sulphate, ammonium chloride, glycine, DL-valine, L-glutamic acid, urea, thiourea, L-asparagine and peptone. They were also grown on the medium lacking nitrogen. A wide variation was observed in the growth and reproduction of the different isolates. The growth of all of them was good on potassium nitrate, calcium nitrate, glycine, DL-valine, L-glutamic acid, L-asparagine and peptone but the sporulation was satisfactory on calcium nitrate only. Sodium nitrite supported moderate growth of banana leaf isolate whereas there was no growth of the other two isolates. None of the organisms could grow on the medium lacking nitrogen as well as on thiourea. The results obtained with the isolates under study have been compared with those of earlier investigators and it has been clearly established that the different isolates ofA. tenuis could show marked differences in their nitrogen requirements.  相似文献   

14.
The rate of nitrate uptake by N-depleted French dwarf bean (Phaseolus vulgaris L. cv. Witte Krombek) increased steadily during the first 6 h after addition of NO3 -After this initial phase the rale remained constant for many hours. Detached root systems showed the same time-course of uptake as roots of intact plants. In vivo nitrate reductase activity (NRA) was assayed with or without exogenous NO3- in the incubation medium and the result ing activities were denoted potential and actual level, respectively. In roots the difference between actual and potential NRA disappeared within 15 min after addition of nitrate, and NRA increased for about 15 h. Both potential and actual NRA were initially very low. In leaves, however, potential NRA was initially very high and was not affected by ambient nitrate (0.1–5 mol m-3) for about 10 h. Actual and potential leaf NRA became equal after the same period of time. In the course of nitrate nutrition, the two nitrate reductase activities in leaves were differentially inhibited by cycloheximide (3.6 mmol m-3) and tungstate (1 mol m-3). We suggest that initial potential NRA reflects the activity of pre-existing enzyme, whereas actual NRA depends on enzyme assembly during NO3- supply. Apparent induction of nitrate uptake and most (85%) of the actual in vivo NRA occurred in the root system during the first 6 h of nitrate utilization by dwarf bean.  相似文献   

15.
Root growth respiration and root maintenance respiration rate of the following species were determined: Hypochaeris radicata L. ssp. radicata L., H. radicata ssp. ericetorum Van Soest, Plantago lanceolata L., P. major L. ssp. major, P. major ssp. pleiosperma Pilgcr, P. maritime L., Senecio viscosus L., S. vulgaris L. and Urtica dioica L. A high root growth respiration (i.e. the amount of oxygen consumed for synthesis of a given weight of root material) implied a high maintenance respiration rate (i.e. the amount of oxygen consumed per unit of time and dry weight, but not connected with growth). High values of both components reflect a low efficiency of root respiratory processes. The efficiency of root respiration, as determined by the values for root growth respiration and root maintenance respiration rate could not be demonstrated to be of advantage in adaptation to soil conditions, as e.g. nitrogen content, moisture content and pH. It is concluded that (he degree of ‘wasteful utilization of sugars’ in roots, i.e. such consumption of sugars as cannot be related to structural growth, storage of carbohydrates or maintenance processes, depends on imbalance of transport of sugars from the shoot to the roots with utilization of sugars for synthesis of root material. The results are discussed in relation to Brouwer's explanation for the equilibrium between the growth of shoots and of roots. Root growth rate in the present species appears limited by a factor produced in the shoot under light conditions, and which factor is distinct from carbohydrates. The evidence presented shows that relatively inefficient root respiration does not imply a low growth rate. In regulation of plant growth the growth rate itself and also the shoot to-root ratio may be more important than the regulation of the efficiency of energy metabolism.  相似文献   

16.
Summary Three tree species,Eucalyptus regnans (F. Muell.),E. obliqua (L'Herit.),Pinus radiata (D. Don) were grown in sand culture with different proportions of nitrate and ammonium. Nitrate Reductase Activity (NRA) was induced in root tissue of all species and in leaf tissue of the eucalypts. An increasing proportion of nitrate resulted in increasing NRA in all species and hence NRA alone is no indication of N-preference. The highest NRA was found withE. regnans, a result which has also been obtained in the mature forest. The growth ofE. regnans was least with NH4 + alone, whereas that ofE. obliqua was least with NO3 alone. The soils of matureE. regnans forest have a high potential for nitrification while those ofE. obliqua forest show little nitrification. Thus the preference for particular N sources shown by seedlings in culture is supported by related properties of mature forests. It is postulated however, that the inducibility of a high level of RNA in seedlings is more likely a result of a preference for NO3 than a cause.  相似文献   

17.
Root respiration of the tap root forming species Hypochaeris radicata L. was measured during tap root formation. A comparison was made of two subspecies: H. radicata L. ssp. radicata L., a subspecies from relatively rich soils, and H. radicata L. ssp. ericetorum Van Soest, a subspecies from poor acidic soils. Root respiration was high and to a large extent inhibited by hydroxamic acid (SHAM) before the start of the tap root formation, indicating a high activity of an alternative non-phosphorylative electron transport chain. The rate of root respiration was much lower and less sensitive to SHAM when a considerable tap root was present. However, root respiration was also cyanide-resistant when a tap root was present, indicating that the alternative pathway was still present. A decreased rate of root respiration coincided with an increase of the content of storage carbohydrates, mainly in the tap root. The level of reducing sugars was constant throughout the experimental period, and it was concluded that the activity of the alternative oxidative pathway was significant in oxidation of sugars that could not be utilized for purposes like energy production, the formation of intermediates for growth or for storage. Root respiration decreased after the formation of a tap root. This decrease could neither be attributed to a gradual disappearance of the alternative chain, nor to a decreased level of reducing sugars. No differences in respiratory metabolism between the two subspecies have been observed, suggesting that a high activity of the alternative oxidative pathway is not significant in adaptation of the present two subspecies to relatively nutrient-rich or poor soils.  相似文献   

18.
Nitrate reductase activity (NRA) in different compartments of 14 Mediterranean geophytes (bulbous, tuberous and rhizomatous) and actual mineral nitrogen (NO3 and NH4+) in their soils were investigated. The nitrate reduction capacities of each species were determined as NRA per total plant material. Differences among compartments for NRA were significant in all species. The highest NRA was found in leaves of tuberous species (Anemone coronaria, Cyclamen coum) and of most bulbous species (Allium flavum, Allium guttatum, Bellevelia sarmatica, Galanthus plicatus, Leucojum aestivum, Ornithogalum nutans, Tulipa sylvestris). Therefore, in this group of species the contribution of the leaves to total plant NRA was the highest. The other bulbous species (Allium scorodoprasum, Crocus chrysanthus, Fritillaria bithynica, Muscari neglectum) and one rhizomatous taxon (Iris suaveolens) have a different NRA distribution within the plants. In these species the highest values of NRA were found in different organs. For example, in Allium scorodoprasum the highest NRA was in tunics, and in flowers in M. neglectum. Although leaves are the main compartments reducing nitrate in most of the studied geophytes, other compartments also contribute to total plant nitrate reduction.Our results show that the nitrate reduction capacity is different among geophyte species. Even if it roughly reflects the nitrogen supply in a habitat, differences in nitrate reduction capacities of different species collected from same sites indicate that the nitrate reducing capacity is species-specific.  相似文献   

19.
When following the pattern of the disappearance of NH 4 + –N from ammonium sulfate applied to the flooded soil-rice plant system (field and greenhouse experiments) during a growing season, it was observed that the lowest NH 4 + –N level coincided with the highest value of NR activity in the leaves. Nitrate was detected in both the root and shoot systems of the rice plants and autotrophic nitrifiers (Nitrosomonas and Nitrobacter) were particularly abundant. Since it was also demonstrated in this work that the NR activity of rice plants grown with nitrate fertilization (growth chamber culture experiments) was inducible by its substrate, it can be assumed that NH 4 + –N oxidation takes place in the water-logged soil studied. Therefore, the occurrence of the nitrification process following NH 4 + –N fertilizer application can be predicted by thein vitro orin situ evaluation of the NR activity of the rice leaf as an indicator.  相似文献   

20.
The influence of added ammonium, phosphorus, potassium, and gypsum on net nitrogen mineralization was studied in soil beneath a six-year-old plantation of the N2-fixing tree Dalbergia sissoo in Pakistan. Soil with and without amendments was placed in polyethylene bags and incubated, buried in the soil, for 30 days. After that time the soil was analyzed and net ammonium and nitrate production and net nitrogen mineralization were calculated. The addition of ammonium stimulated nitrification indicating that the process was substrate limited. The inhibition of nitrification by Nitrapyrin showed that the process is autotrophic in these soils. Gypsum addition lowered soil pH from 8.0 to 7.2 and significantly stimulated ammonification, nitrification and net nitrogen mineralization. The addition of potassium more than tripled the soil K:Na ratio. Net ammonium and nitrate production and net nitrogen mineralization all increased in this treatment. The addition of phosphorus had no significant effect on soil nitrogen dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号