首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We characterized the tyrosine phosphorylation sites of free pp60c-src and of pp60c-src associated with the polyomavirus middle tumor antigen (mT) in transformed avian and rodent cells. The sites of tyrosine phosphorylation in the two populations of pp60c-src were different, both in vitro and in vivo. Free pp60c-src was phosphorylated in vitro at a single site, tyrosine 416. pp60c-src associated with mT was phosphorylated in vitro on tyrosine 416 and on one or more additional tyrosine residues located in the amino-terminal region of the molecule. Free pp60c-src in polyomavirus mT-transformed cells was phosphorylated in vivo on tyrosine 527. In contrast, pp60c-src associated with mT was phosphorylated in vivo on tyrosine 416 and not detectably on tyrosine 527. Thus, the in vivo phosphorylation sites of pp60c-src associated with mT in transformed cells are identical to those of pp60v-src, the Rous sarcoma virus transforming protein. The results suggest that altered phosphorylation of pp60c-src associated with mT may play a role in the enhancement of the pp60c-src protein kinase activity and in cell transformation by polyomavirus.  相似文献   

2.
High yields of soluble, biologically active pp60c-src and middle t antigen (MTAg) of polyomavirus were produced in insect cells, using a baculovirus expression system. In mammalian cells, pp60c-src undergoes a regulatory phosphorylation on Tyr-527 in vivo and is autophosphorylated on Tyr-416 in vitro. In insect cells, pp60c-src was phosphorylated primarily on Tyr-416, although Tyr-527 was detectable at a low level. A kinase-negative mutant of pp60c-src was not phosphorylated on either Tyr-527 or Tyr-416 in insect cells and thus is an excellent biochemical reagent to search for the regulatory kinase that usually phosphorylates Tyr-527 in mammalian cells. MTAg synthesized in insect cells was not phosphorylated on tyrosine residues in vivo or in vitro, suggesting that it did not associate with any endogenous tyrosine kinases. However, MTAg isolated from cells coinfected with viruses encoding both MTAg and pp60c-src was phosphorylated on tyrosine residues both in vivo and in vitro.  相似文献   

3.
Deletion of residues 305 to 327 of polyomavirus middle T antigen, including the (Glu)6-Tyr-315 sequence that is a preferred site of phosphorylation in vitro by pp60c-src, markedly altered viral transformation of rat cells. The efficiency of transformation by the deletion mutant depended on how it was introduced into cells, and the resulting transformants displayed limited growth rates in monolayer and in suspension. Substitution of the polyomavirus residues 305 to 327 with a homologous region (containing [Glu]5-Ala-Tyr) from porcine gastrin did not restore wild-type transforming activity. These mutant middle T antigens interacted with pp60c-src and were phosphorylated in vitro. Thus, although a sequence of consecutive glutamic acid residues followed by a tyrosine is a dominant structural element which strongly influences the physical properties of middle T antigen, its presence did not ensure the biological activity of the protein. Other elements in this region of middle T antigen also contributed substantially to the transforming capacity of polyomavirus.  相似文献   

4.
S A Courtneidge  A Heber 《Cell》1987,50(7):1031-1037
It has previously been shown that a proportion of middle T antigen molecules exist in a stable complex with pp60c-src. Here we show that there appears to be a third component to the complex, a protein of molecular mass 81 kd (p81). p81 was phosphorylated exclusively on tyrosine residues in kinase assays performed using immunoprecipitates from polyoma virus-transformed cells and antibodies to both middle T and pp60c-src, and was also detected when immunoprecipitates were made from lysates of 32P-labeled cells. p81 was bound to middle T and pp60c-src in cell lines containing transforming mutants of middle T, but not (in phosphorylated form) to all nontransforming mutants. A parallel investigation of phosphatidylinositol kinase activity in immune complexes containing these middle T mutants revealed a complete coincidence between the presence of p81 and phosphatidylinositol kinase activity. We therefore suggest that p81 is a phosphatidylinositol kinase.  相似文献   

5.
AtT20 cells express modified forms of pp60c-src   总被引:2,自引:0,他引:2  
We have compared the properties of pp60c-src from the mouse pituitary tumor cell line, AtT20, and from mouse fibroblasts. In vitro, pp60c-src phosphotransferase activity from AtT20 cells is 2- to 3-fold that of mouse NIH 3T3 fibroblast pp60c-src. In analyzing the reason for this elevation in specific activity, we found that pp60c-src from AtT20 cells differs structurally in at least three ways from pp60c-src in fibroblasts. First, AtT20 cells and primary rat anterior pituitary cells express low levels of the neuronal form of pp60c-src. Second, pp60c-src from AtT20 cells is phosphorylated at two additional N-terminal serine residues. Last, AtT20 pp60c-src is phosphorylated to a lower overall stoichiometry.  相似文献   

6.
We have found that lysis of mouse embryo cells infected with the polyomavirus host range transformation-defective (hr-t) mutant NG59 under gentle conditions that avoid ionic detergents results in detectable NG59-encoded middle tumor antigen (MTAg) associated with pp60c-src. This MTAg-pp60c-src complex could be immunoprecipitated from NG59-infected cell lysates by either sera from animals bearing polyomavirus-induced tumors or by monoclonal antibodies directed against MTAg. Immune complex kinase assays revealed that, whereas the pp60c-src associated with NG59 MTAg possessed tyrosyl kinase activity, the NG59 MTAg in this complex was not phosphorylated in these in vitro reactions. These results demonstrate that the point insertion mutation found in this transformation-deficient strain of polyomavirus encodes MTAg molecules capable of associating with pp60c-src and defines a limited region within MTAg which appears to be critical for stable MTAg-pp60c-src interactions.  相似文献   

7.
We have observed increased phosphorylation of tyrosine residues on the polyoma virus middle tumor antigen (MTAg) in in vitro kinase assays of the immune complexes immunoprecipitated from lysates of polyoma virus-infected mouse embryo cells to which increasing amounts of uninfected mouse embryo cell lysate had been added. The components from uninfected mouse cells responsible for increased MTAg phosphorylation were localized by subcellular fractionation to the plasma membrane and found to be sensitive to protease digestion, N-ethylmaleimide, and 5'-p-fluorosulfonylbenzoyladenosine inactivation. The majority of the membrane-associated activity responsible for the increased MTAg phosphorylation in these assays could be cleared from lysates of uninfected mouse cell lysates by centrifugation after reaction with Sepharose-bound monoclonal antibodies which recognize pp60c-src. These results suggest that MTAg can associate with cellular tyrosyl kinases in vitro and be phosphorylated by these enzymes in immune-complex kinase assays. The identity of at least one of these cellular tryosyl kinases which can associate with MTAg in vitro is likely to be pp60c-src.  相似文献   

8.
fyn is a member of the growing family of protein tyrosine kinase genes whose sequences are highly related to that of c-src. We have generated antibodies to peptides corresponding to two different amino-terminal sequences encoded by this gene. Antisera to both peptides recognized a 59 kd protein from human and mouse fibroblasts. p59fyn was phosphorylated in vivo on serine and tyrosine residues and was also myristylated. Furthermore, immune precipitates of p59fyn had tyrosine kinase activity in vitro, as measured by autophosphorylation and by phosphorylation of substrates such as enolase. This kinase activity was shown to be negatively regulated by tyrosine phosphorylation. We have also established that, like pp60c-src and p62c-yes, p59fyn was complexed with middle T antigen, the transforming protein of polyoma virus. However, the tyrosine kinase activity of p59fyn was not elevated in middle T transformed cells. Possible explanations for this are discussed.  相似文献   

9.
Stimulation of protein kinase C in polyoma virus-transformed cells increased the phosphorylation of tyrosine residues of the viral middle T (mT) antigen in mT:pp60c-src complexes precipitated by anti-mT antibodies. This increase might have been due to a stimulation of the complex's pp60c-src tyrosine kinase activity or to an increased ability of the mT protein to be phosphorylated by pp60c-src. These observations suggest that cellular protein kinase C might control the ability of polyoma virus to transform its host cell.  相似文献   

10.
The transforming protein of polyoma virus, middle T antigen, associates with the protein tyrosine kinase pp60c-src, and analysis of mutants of middle T suggests that this complex plays an important role in transformation by polyoma. It has recently been reported that pp60c-src from polyoma virus-transformed cells has enhanced tyrosine kinase activity in vitro. The data presented here confirm these findings and show that the enhanced kinase activity of pp60c-src is due to an increase in the Vmax of the enzyme. Sucrose density gradient analysis demonstrates that only the form of pp60c-src which is bound to middle T antigen is activated. The difference in enzyme activity between pp60c-src from normal and middle T-transformed cells is more marked when the enzyme is prepared from lysates containing the phosphotyrosine protein phosphatase inhibitor, sodium orthovanadate. pp60c-src from middle T transformed cells is unaffected, but pp60c-src from normal cells has reduced kinase activity if dephosphorylation is prevented. The kinase activity of pp60c-src thus appears to be regulated by its degree of phosphorylation at tyrosine, and data are presented which support this hypothesis. pp60c-src is the first example of a protein tyrosine kinase whose activity is inhibited by phosphorylation at tyrosine. Middle T antigen may increase the kinase activity of pp60c-src by preventing phosphorylation at this regulatory site.  相似文献   

11.
Reconstitution of the polyoma virus middle T antigen (mT)-pp60-src complex and phosphatidylinositol 3-kinase (PtdIns 3-kinase) has been accomplished in vitro with immunopurified baculovirus-expressed mT-pp60c-src and PtdIns 3-kinase purified from rat liver. Both the 110- and 85-kDa subunits of the PtdIns 3-kinase associated with the mT-pp60c-src complex. The association of PtdIns 3-kinase with the mT-pp60c-src complex was dependent on the protein-tyrosine kinase activity of pp60c-src as a kinase-inactive mutant (pp60(295c-src)) still complexed with mT, but the mT-pp60(295c-src)) complex was unable to bind PtdIns 3-kinase. The mT-pp60c-src complex phosphorylated both subunits of PtdIns 3-kinase on tyrosine residues. The immunopurified mT-pp60c-src complex also associated with PtdIns 3-kinase activity from whole cell lysates, and this association was dependent upon the protein-tyrosine kinase activity of pp60c-src. Comparison of 35S-labeled proteins from whole cell lysates which associated with immunopurified mT-pp60c-src and mT-pp60(295c-src) revealed proteins of 110 and 85 kDa as the major peptides dependent on protein-tyrosine kinase activity for association with the complex. In addition, a synthetic phosphopeptide (13-mer) containing sequences conserved between the major tyrosine phosphorylation site of murine polyoma virus mT, hamster polyoma virus mT, and the insulin receptor substrate (IRS-1) specifically blocked the association of the 85- and 110-kDa polypeptides with the mT-pp60c-src complex. The ability to block the association was dependent on the tyrosine phosphorylation of the peptide. Association of PtdIns 3-kinase activity was blocked concurrently. This is the first demonstration that the 110-kDa subunit of PtdIns 3-kinase can associate with mT-pp60c-src. This association in vitro is a step toward understanding protein-protein interactions important in the signal transduction pathway of oncogenic proteins.  相似文献   

12.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

13.
We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.  相似文献   

14.
We examine the interaction between polyoma-virus-encoded middle tumor antigen and the cellular src gene product, pp60c-src, using a series of monoclonal antibodies that recognize mammalian pp60c-src. Our results show that infection of mouse cells with transformation-competent strains of polyoma virus results in the stimulation of pp60c-src kinase activity severalfold over that observed in uninfected mouse cells and mouse cells infected with transformation-deficient polyoma virus. A similar degree of enhancement of pp60c-src kinase activity was found in polyoma-virus-transformed rodent cells. No differences were detected in the level of pp60c-src synthesis in polyoma-virus-infected and uninfected mouse cells or polyoma-virus-transformed and normal rodent cells. These studies demonstrate that polyoma-virus-encoded middle tumor antigen is associated with pp60c-src in lysates of polyoma-virus-infected and polyoma-virus-transformed cells and suggest a novel mechanism for the functional activation of a cellular proto-oncogene product, namely, that the interaction between middle tumor antigen and pp60c-src leads to a stimulation of pp60c-src tyrosyl kinase activity.  相似文献   

15.
Recombinant adenoviruses bearing the avian c-src gene and polyomavirus middle-T-antigen gene were isolated and used to simultaneously overexpress both proteins in human 293 cells. Cells overexpressing both proteins had greater middle-T-antigen-associated tyrosine kinase activity than cells overexpressing only middle T antigen. By contrast, the intrinsic pp60c-src tyrosine kinase activity was not greater in cells overexpressing both proteins than in cells overexpressing only pp60c-src. This system of simultaneous overexpression provides a means of obtaining large quantities of pp60c-src, middle T antigen, and the complex between them.  相似文献   

16.
The biological and biochemical properties of pp60c-src are regulated, in part, by phosphorylation at Tyr-416 and Tyr-527. The tyrosine kinase and transforming activities of pp60c-src are suppressed by phosphorylation at Tyr-527, whereas full activation of pp60c-src requires phosphorylation at Tyr-416. To test specifically the significance of the negatively charged phosphate moieties on these tyrosine residues, we have substituted the codons for both residues with codons for either Glu or Gln. A negatively charged Glu at position 527 was unable to mimic a phosphorylated Tyr at this position, and, in consequence, the mutated pp60c-src was activated and transforming. Similarly, substitution of Tyr-416 with Glu was unable to stimulate the activities of the enzyme. However, mutagenesis of Tyr-416 to Gln (to form the mutant 416Q) activated the kinase activity approximately twofold over that observed for wild-type pp60c-src. When introduced into the mutant 527F (containing Phe-527 instead of Tyr), the double mutant 416Q-527F exhibited weak transforming activity. This is in contrast to the other double mutants 416E-527F and 416F-527F, which were nontransforming. The biochemical basis by which 416Q activates pp60c-src is not understood but probably involves some local conformational perturbation. Deletion of residues 519 to 524 (RH5), a region previously shown to be necessary for association with middle-T antigen, led to loss of phosphorylation at Tyr-527 and activation of the enzymatic and focus-forming activities of pp60c-src. Hence, the sequences necessary for complex formation with middle-T antigen may also be required by the kinase(s) which phosphorylates Tyr-527 in vivo. This suggests that normal cells contain cellular proteins which are analogous to middle-T antigen and whose action regulates the activity of pp60c-src by controlling phosphorylation or dephosphorylation at residue 527.  相似文献   

17.
A large number of mutations were introduced into the carboxy-terminal domain of pp60c-src. The level of phosphorylation on Tyr-416 and Tyr-527, the transforming activity (as measured by focus formation on NIH 3T3 cells), kinase activity, and the ability of the mutant pp60c-src to associate with the middle-T antigen of polyomavirus were examined. The results indicate that Tyr-527 is a major carboxy-terminal element responsible for regulating pp60c-src in vivo. A good but not perfect correlation exists between lack of phosphorylation at Tyr-527 and increased phosphorylation at Tyr-416, between elevated phosphorylation on Tyr-416 and activated kinase activity, and between activated kinase activity and transforming activity. Phosphorylation of Tyr-527 was insensitive to the mutation of adjacent residues, indicating that the primary sequence only has a minor role in recognition by kinases or phosphatases which regulate it in vivo. Three mutants which have in common a modified Glu-524 residue were phosphorylated on Tyr-416 and Tyr-527 and were weakly transforming. This suggests that other mechanisms besides complete dephosphorylation of Tyr-527 can lead to increased phosphorylation of Tyr-416 and activation of the transforming activity of pp60c-src. Furthermore, the residues between Asp-518 and Pro-525 were required to form a stable complex with middle-T antigen. The proximity of these sequences to Tyr-527 suggests a model in which middle-T activates pp60c-src by binding directly to this region of the molecular and thereby preventing phosphorylation of Tyr-527. Alternatively, middle-T binding may mediate a conformational change in this region, which in turn induces an alteration in the level of phosphorylation at Tyr-527 and Tyr-416.  相似文献   

18.
pp60c-src, the cellular homolog of the Rous sarcoma virus transforming protein, does not completely transform cells even when present at high levels, but has been shown to be involved in polyomavirus-induced transformation when activated by polyomavirus middle T (pmt)-antigen binding. Here we show that cotransfection, but not solo transfection, of expression plasmids for c-src and either adenovirus E1A, v-myc, c-myc, or the 5' half of polyomavirus large T (pltN) antigen into NIH 3T3 cells induces anchorage-independent growth, enhanced focus formation, and, for pltN cotransfection, tumorigenicity in adult NFS mice. Enhancement of transformation was not observed with polyomavirus small t (pst) antigen. Cotransfection of c-src with pltN induced modification of pp60c-src that altered its electrophoretic mobility and in vivo phosphorylation state and stimulated its in vitro kinase activity. Similar alterations were not seen after c-src-E1A cotransfection, suggesting that at least two different mechanisms of enhancement are involved.  相似文献   

19.
The polyoma middle tumor antigen (MTAg) associates with the src proto-oncogene product pp60c-src in infected or transformed rodent cells. The tyrosine protein kinase activity of pp60c-src, as measured by in vitro phosphorylation of pp60c-src itself or the exogenous substrate enolase, was increased 10- to 20-fold in cells transformed or infected with transformation-competent polyoma virus compared with controls. pp60c-src associated with MTAg and precipitated with polyoma antitumor serum had a novel site(s) of in vitro tyrosine phosphorylation within its amino-terminal domain. These observations suggest that association of MTAg with pp60c-src alters the accessibility of pp60c-src tyrosine residues for phosphorylation in vitro and increases pp60c-src protein kinase activity. Several transformation-defective mutants of MTAg did not cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro or enhance its protein kinase activity, suggesting that these properties correlate with the transforming ability of MTAg. However, one transformation-defective MTAg mutant, dl1015, did cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro and did enhance its protein kinase activity. This suggests that properties of MTAg, in addition to modifying the structure and function of pp60c-src, may be important for transformation.  相似文献   

20.
Phosphorylation of pp60c-src at Tyr-527, six residues from the carboxy terminus, has been implicated in regulation of the protein-tyrosine kinase activity of pp60c-src. Here we show that dephosphorylation of pp60c-src by phosphatase treatment in vitro caused a 10- to 20-fold increase in pp60c-src protein-tyrosine kinase activity. Binding of specific antibody to the region of pp60c-src which contains phosphotyrosine-527 also increased kinase activity. Each treatment increased phosphorylation of added substrates and of Tyr-416 within pp60c-src by a similar mechanism that involved altered interactions with ATP and increased catalytic rate. We suggest that the phosphorylated carboxy terminus acts as an inhibitor of the protein kinase domain of pp60c-src, unless its conformation is altered by either dephosphorylation or antibody binding. The antibody additionally stimulated the phosphorylation of forms of pp60c-src that had reduced gel mobility, much like those phosphorylated in kinase reactions containing pp60c-src activated by polyomavirus medium tumor antigen. These in vitro experiments provide models for the activation of pp60c-src in cells transformed by polyomavirus. We also show that autophosphorylation of pp60c-src at Tyr-527 occurs only to a very limited extent in vitro, even when Tyr-527 is made available for phosphorylation by treatment with phosphatase. This suggests that other protein-tyrosine kinases may normally phosphorylate Tyr-527 and regulate pp60c-src in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号