首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined reduction potentials for porcine mitochondrial general fatty acyl-CoA dehydrogenase (GAD) and electron transfer flavoprotein (ETF) using an anaerobic spectroelectrochemical titration method. Computer simulation techniques were used to analyze the absorbance data. Nernst plots of the simulated data gave E'0, 7.1, quinone/semiquinone = -0.014 V and E'0, 7.1, semiquinone/hydroquinone = -0.036 V for ETF and E'0, 7.1, quinone/semiquinone = -0.155 V and E'0, 7.1, semiquinone/hydroquinone = -0.122 V for GAD. Using these techniques we have also determined a conditional reduction potential of -0.156 V for the chromophore producing fatty acyl-CoA substrate beta-2-furylpropionyl-CoA. From this value and our previous determination of the equilibrium constant for the transhydrogenation reaction between beta-2-furylpropionyl-CoA and the oxidized substrate crotonyl-CoA (Keq = 10.4), we have determined a reduction potential of -0.126 V for the butyryl-CoA/crotonyl-CoA couple. In light of the structural similarity between butyryl-CoA and octanoyl-CoA, the optimal substrate for GAD, the reduction potential for octanoyl-CoA should be similar to that for butyryl-CoA; i.e. fatty acyl-CoA substrates and GAD are essentially isopotential. The ability of octanoyl-CoA to reduce GAD quantitatively (Keq = 9.0) poses a dilemma in light of the nearly equal reduction potentials. We postulate that the stable charge-transfer complex formed between enzyme and optimal product is significantly lower in energy than enzyme and product and thus is responsible for pulling the reaction toward completion.  相似文献   

2.
The kinetic properties of general acyl-CoA dehydrogenase from pig kidney have been investigated using normal butyryl-CoA as well as an alpha-deutero, beta-deutero- and perdeutero-butyryl-CoA. In turnover catalysis, isotope effects of 2, 3.6, and 9 were found respectively. In the reductive half reaction the isotope effects were 2.5, 14, and 28 for the same substrates, and 21 for (2R,3R)-(2,3-D2)butyryl-CoA. No intermediates are apparent during the reduction of oxidized enzyme to the presumed complex of reduced enzyme and crotonyl-CoA. The results are interpreted as indicating a high degree of concertedness during the rupture of the alpha and beta C-H bonds. They are compatible with a mechanism in which simultaneously the alpha-hydrogen is abstracted as a proton, while the beta-hydrogen is transferred to the oxidized flavin as a hydride.  相似文献   

3.
Enzymology of butyrate formation by Butyrivibrio fibrisolvens.   总被引:2,自引:0,他引:2       下载免费PDF全文
Butyrivibrio fibrisolvens is a major butyrate-forming species in the bovine and ovine rumen. The enzymology of butyrate formation from pyruvate was investigated in cell-free extracts of B. fibrisolvens D1. Pyruvate owas oxidized to acetylcoenzyme A (CoA) in the presence of CoA.SH and benzyl viologen or flavin nucleotides. The bacterium uses thiolase, beta-hydroxybutyryl-CoA dehydrogenase, crotonase, and crotonyl-CoA reductase to form butyryl-CoA from acetyl-CoA. Reduction of acetoacetyl-CoA to beta-hydroxybutyryl-CoA was faster with NADH than with NADPH. Crotonyl-CoA was reduced to butyryl-CoA by NADH, but not by NADPH, only in the presence of flavin nucleotides. Reduction of flavin nucleotides by NADH was much slower than the flavin-dependent reduction of crotonyl-CoA. This indicates that flavoproteins rather than free flavin participated in the reduction of crotonyl-CoA. Butyryl-CoA was converted to butyrate by phosphate butyryl transferase and butyrate kinase.  相似文献   

4.
In Peptostreptococcus elsdenii, a three-component flavoprotein electron transfer system catalyzes the oxidation of lactate and the reduction of crotonyl-coenzyme A (CoA). Spectral evidence showed that D-lactate dehydrogenase, when reduced by D-lactate, was able to reduce butyryl-CoA dehydrogenase, but only in the presence of the electron-transferring flavoprotein. Reduced nicotinamide adenine dinucleotide could replace reduced D-lactate dehydrogenase. A reconstituted system, containing the three partially purified enzymes, excess D-lactate, and a limiting amount of crotonyl-CoA, reduced the crotonyl-CoA to butyryl-CoA, but only if all components were present. The electron-transferring flavoprotein activity, purified 22-fold, was separated into two major flavoprotein components, A and B, after polyacrylamide gel electrophoresis. Elution of the proteins and subsequent kinetic assays of the eluates showed that component B catalyzes the reduction of butyryl-CoA dehydrogenase by reduced D-lactate dehydrogenase, whereas component A does not. Both A and B catalyzed the reduction of butyryl-CoA dehydrogenase by reduced nicotinamide adenine dinucleotide. The results suggest that the D-lactate dehydrogenase-dependent reduction involves a heretofore unrecognized component of the electron-transferring protein group which may utilize an unusual flavin, 6-hydroxy-7,8-dimethyl-10-(ribityl-5'-adenosine diphosphate)-isoalloxazine.  相似文献   

5.
The reduction of the melilotate hydroxylase . 2-OH-phenyl propionate complex by NADH and reduced 3-acetyl pyridine adenine dinucleotide (AcPyNADH) has been investigated using steady state kinetic and rapid reaction techniques. Reduction by NADH appeared to involve only one charge-transfer-type intermediate (between reduced enzyme and NAD) as previously described (Strickland, S., and Massey, V. (1973) J. Biol. Chem. 248, 2953-2962). Reduction by AcPyNADH was shown to involve two charge-transfer-type intermediates. The first was between oxidized enzyme and AcPyNADH and the second was between reduced enzyme and AcPyNAD. Reaction of AcPyNADH with oxidized enzyme . 2-OH-phenyl propionate complex to form the first charge-transfer complex reached equilibrium within the mixing time of the stopped flow apparatus (5 ms). Subsequent steps in the reaction appeared to be first order and were independent of the AcPyNADH concentration. An 8-fold deuterium isotope effect on the step involving flavin reduction was found when reduced 3-acetyl[4A-2H]pyridine adenine dinucleotide (AcPyNADD) was used as the reductant. Analysis of the rapid reaction results for the reaction of oxidized pyridine nucleotide with reduced enzyme . 2-OH-phenyl propionate complex indicated the presence of two forms of reduced enzyme (in equilibrium) of which only one form was capable of reacting with the oxidized pyridine nucleotide. Based on the rapid reaction data, a mechanism for the reduction half-reaction is proposed. The turnover number calculated from this mechanism is in good agreement with that determined from the steady state data.  相似文献   

6.
Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na+ dependent. Consistent with the finding of a Na+-dependent Rnf complex is the presence of a conserved Na+-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.  相似文献   

7.
Until now, workers in the field of fatty acid metabolism have suggested that the substrates are isopotential with the enzymes and that the reactions are forced to completion by the formation of charge-transfer complexes [Gustafson, W. G., Feinberg, B. A., & McFarland, J. T. (1986) J. Biol. Chem. 261, 7733-7741]. To date, no experimental evidence for this hypothesis exists. The work presented here shows that the butyryl-CoA/crotonyl-CoA couple is not isopotential with the enzymes with which it interacts. The potential of the butyryl-CoA/crotonyl-CoA couple (E ' = -0.013 V) is significantly more positive than the potential of either of the enzymes with which it interacts, bacterial butyryl-CoA dehydrogenase (E ' = -0.079 V) and mammalian general acyl-CoA dehydrogenase (E ' = 0.133 V). These data imply that the regulation of enzyme potential is essential for any electron transfer from substrate to enzyme to occur in mammalian or bacterial systems. In support of this assertion, a significant shift in potential for bacterial butyryl-CoA dehydrogenase (an analogue of the mammalian enzyme) in the presence of butyryl-CoA and crotonyl-CoA is reported. The potential is shifted positive by 60 mV. Larger potential shifts will undoubtedly be observed with the mammalian enzyme, which would be consistent with the catalytic direction of electron transfer.  相似文献   

8.
Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.  相似文献   

9.
Respiration-linked oxidation of 3-hydroxybutyryl-CoA, crotonyl-CoA and saturated fatty acyl (C4, C8 and C14)-CoA esters was studied in different mitochondrial preparations. Oxidation of acyl-CoA esters was poor in intact mitochondria; however, it was significant, as well as, NAD+ and CoA-dependent in gently and in vigorously sonicated mitochondria. The respiration-linked oxidation of crotonyl-CoA and 3-hydroxybutyryl-CoA proceeded at much higher rates (over 700%) in gently disrupted mitochondria than in completely disrupted mitochondria. The redox dye-linked oxidation of crotonyl-CoA (with inhibited respiratory chain) was also higher in gently disrupted mitochondria (149%) than in disrupted ones. During the respiration-linked oxidation of 3-hydroxybutyryl-CoA the steady-state NADH concentrations in the reaction chamber were determined, and found to be 8 microM in gently sonicated and 15 microM in completely sonicated mitochondria in spite of the observation that the gently sonicated mitochondria oxidized the 3-hydroxybutyryl-CoA much faster than the completely sonicated mitochondria. The NAD(+)-dependence of 3-hydroxybutyryl-CoA oxidation showed that a much smaller NAD+ concentration was enough to half-saturate the reaction in gently disrupted mitochondria than in completely disrupted ones. Thus, these observations indicate the positive kinetic consequence of organization of beta-oxidation enzymes in situ. Respiration-linked oxidation of butyryl-, octanoyl- and palmitoyl-CoA was also studied and these CoA intermediates were oxidized at approx. 50% of the rate of crotonyl- and 3-hydroxybutyryl-CoA in the gently disrupted mitochondria. In vigorously disrupted mitochondria the oxidation rate of these saturated acyl-CoA intermediates was hardly detectable indicating that the connection between the acyl-CoA dehydrogenase and the respiratory chain had been disrupted.  相似文献   

10.
p-Hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens is a NADPH-dependent, FAD-containing monooxygenase catalyzing the hydroxylation of p-hydroxybenzoate to form 3,4-dihydroxybenzoate in the presence of NADPH and molecular oxygen. The mechanism of this three-substrate reaction was investigated in detail at pH 6.6, 4 degrees C, by steady state kinetics, stopped flow spectrophotometry, and equilibrium binding experiments. The initial velocity patterns are consistent with a ping-pong type mechanism which involves two ternary complexes between the enzyme and substrates. The first ternary complex is formed by random addition of p-hydroxybenzoate and NADPH to the enzyme, followed by the release of the first product (NADP+). The reduced enzyme . p-hydroxybenzoate complex now reacts with oxygen, the third substrate, to form the second ternary complex. The enzyme-bound p-hydroxybenzoate then reacts with the activated oxygen to give 3,4-dihydroxybenzoate which is released regenerating the oxidized enzyme for the next cycle. The binding of p-hydroxybenzoate to the oxidized enzyme to form a 1:1 complex causes large, characteristic spectral perturbations and fluorescence quenching. The dissociation constant for the enzyme . substrate complex was obtained by titrations in which absorbance and/or fluorescence quenching was measured. The binding constants of NADPH to the enzyme with and without p-hydroxybenzoate were determined kinetically by measuring the rate of reduction of the enzyme at different concentrations of NADPH. The reduction of the enzyme proceeds extremely slowly in the absence of p-hydroxybenzoate. The presence of the substrate causes a dramatic stimulation (140,000-fold) in the rate of enzyme reduction. The anaerobic reduction of the enzyme by NADPH in the presence of p-hydroxybenzoate produces a transient charge-transfer intermediate. On the basis of the proposed mechanism, the dissociation constants for p-hydroxybenzoate and NADPH as well as the Michaelis constants for all the three substrates were calculated from the initial velocity data. The agreement obtained between various kinetic parameters from the initial rate measurements and those calculated from the individual rate constants determined in rapid reactions, strongly supports the proposed mechanism for the p-hydroxybenzoate hydroxylase reaction.  相似文献   

11.
Respiration-linked oxidation of 3-hydroxybutyryl-CoA, crotonyl-CoA and saturated fatty acyl (C4, C8 and C14)-CoA esters was studied in different mitochondrial preparations. Oxidation of acyl-CoA esters was poor in intact mitochondria; however, it was significant, as well as, NAD+ and CoA-dependent in gently and in vigorously sonicated mitochondria. The respiration-linked oxidation of crotonyl-CoA and 3-hydroxybutyryl-CoA proceeded at much higher rates (over 700%) in gently disrupted mitochondria than in completely disrupted mitochondria. The redox dye-linked oxidation of crotonyl-CoA (with inhibited respiratory chain) was also higher in gently disrupted mitochondria (149%) than in disrupted ones. During the respiration-linked oxidation of 3-hydroxybutyryl-CoA the steady-state NADH concentrations in the reaction chamber were determined, and found to be 8 μM in gently sonicated and 15 μM in completely sonicated mitochondria in spite of the observation that the gently sonicated mitochondria oxidized the 3-hydroxybutyryl-CoA much faster than the completely sonicated mitochondria. The NAD+-dependence of 3-hydroxybutyryl-CoA oxidation showed that a much smaller NAD+ concentration was enough to half-saturate the reaction in gently disrupted mitochondria than in completely disrupted ones. Thus, these observations indicate the positive kinetic consequence of organization of β-oxidation enzyme in situ. Respiration-linked oxidation of bytyryl-, oxtanoyl- and palmitoyl-CoA was also studied and these CoA intermediates were oxidized at approx. 50% of the rate of crotonyl- and 3-hydroxybutyryl-CoA in the gently disrupted mitochondria. In vigorously disrupted mitochondria the oxidation rate of these saturated acyl-CoA intermediates was hardly detectable indicating that the connection between the acyl-CoA dehydrogenase and the respiratory chain had been disrupted.  相似文献   

12.
Studies of the spectral (UV/vis and resonance Raman) and electrochemical properties of the FAD-containing enzyme glutaryl-CoA dehydrogenase (GCD) from Paracoccus denitrificans reveal that the properties of the oxidized enzyme (GCDox) appear to be invariant from those properties known for other acyl-CoA dehydrogenases such as mammalian general acyl-CoA dehydrogenase (GACD) and butyryl-CoA dehydrogenase (BCD) from Megasphaera elsdenii. However, when either free or complexed GCD is reduced, its spectral and electrochemical behavior differs from that of both GACD and BCD. Free GCD does not stabilize any form of one-electron-reduced GCD, but when GCD is complexed to its inhibitor, aceto-acetyl-CoA, the enzyme stabilizes 20% of the blue neutral radical form of FAD (FADH.) upon reduction. Like GACD, when crotonyl-CoA- (CCoA) bound GCD is reduced, the red anionic form of FAD radical (FAD.-) is stabilized, and excess reduction equivalents are necessary to effect full reduction of the complex. A comproportionation reaction is proposed between fully reduced crotonyl-CoA-bound GCD (GCD2e-CCoA) and GCDox-CCoA to partially explain the stabilization of GCD-bound FAD.- by CCoA. When GCD is reduced by its optimal substrate, glutaryl-CoA, a two-electron reduction is observed with concomitant formation of a long-wavelength charge-transfer band. It is proposed that the ETF specific for GCD abstracts one electron from this charge-transfer species and this is followed by the decarboxylation of the oxidized substrate. At pH 6.4, potential values measured for free GCD and GCD bound to acetoacetyl-CoA are -0.085 and -0.129 V, respectively. Experimental evidence is given for a positive shift in the reduction potential of GCD when the enzyme is bound to a 1:1 mixture of butyryl-CoA and CCoA. However, significant GCD hydratase activity is observed, preventing quantitation of the potential shift.  相似文献   

13.
Oxidation-reduction potentials of butyryl-CoA dehydrogenase   总被引:1,自引:0,他引:1  
In order to obtain butyryl-CoA dehydrogenase from Megasphaera elsdenii in pure enough form to perform redox studies, the existing purification procedures first had to be modified and clarified [Engel, P. (1981) Methods Enzymol. 71, 359-366]. These modifications are described, and the previously unpublished spectral properties of the electrophoretically pure CoA-free butyryl-CoA dehydrogenase are presented. In our spectral reductive titration of pure enzyme, we show that although blue neutral flavin radical is stabilized in nonquantitative amounts in dithionite titrations (19%) or in electrochemical reductions mediated by methylviologen (5%), it is not thermodynamically stabilized; therefore, only a midpoint potential for butyryl-CoA dehydrogenase is obtained. The electron-transfer behavior from pH 5.5 to pH 7.0 indicates reversible two-electron transfer accompanied by one proton: EFlox + 2e- + H+ = EFlredH- Em7 = -0.079 V vs. SHE where EFlox is oxidized butyryl-CoA dehydrogenase, EFlredH- is two electron reduced enzyme, and Em7 is the midpoint potential at pH 7.0 at 25 degrees C. Redox data and activity data both indicate that the enzyme loses activity rapidly at pH values above 7.0. The Em7 of the butyryl-CoA dehydrogenase is 40 mV positive of the Em7 of the butyryl-CoA/crotonyl-CoA couple [Gustafson, W. G., Feinberg, B. A., & McFarland, J. T. (1986) J. Biol. Chem. 261, 7733-7741]. Binding of substrate analogue acetoacetyl-CoA caused the potential of butyryl-CoA dehydrogenase to shift 100 mV negative of the free enzyme. The negative shift in potential makes electron transfer from enzyme to substrate more probable, which is consistent with the direction of electron transfer in the bacterial system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.  相似文献   

15.
NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between [14C]NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols.  相似文献   

16.
V E Anderson  G G Hammes 《Biochemistry》1984,23(9):2088-2094
The stereochemistry of the four partial reactions catalyzed by chicken liver fatty acid synthase that lead to the synthesis of palmitic acid has been determined. The reduction of acetoacetyl-CoA to 3-hydroxybutyryl-CoA by NADPH proceeds with the transfer of the pro-4S hydrogen of NADPH to form D-3-hydroxybutyryl-CoA. During the subsequent dehydration of D-3-hydroxybutyryl-CoA the pro-2S hydrogen and the 3-hydroxyl group are removed in a syn elimination to form crotonyl-CoA. Crotonyl-CoA is reduced to butyryl-CoA by NADPH, with the transfer of the pro-4R hydrogen of NADPH to the pro-3R position in butyryl-CoA and the transfer of a solvent hydrogen to the pro-2S position. The occurrence of the syn dehydration, when combined with the results of a previous study [ Sedgwick , B., & Cornforth , J. W. (1977) Eur. J. Biochem. 75, 465-479], implies that the condensation of the enzyme-bound malonyl moiety with the enzyme-bound saturated fatty acid to form a 3-keto intermediate proceeds with inversion at C-2 of the malonyl. The stereochemistry of the hydration was derived from an analysis of the spin-spin coupling constant of 3-hydroxy[2-2H]butyric acid benzylamides obtained from 3-hydroxy[2-2H]butyryl-CoA synthesized by fatty acid synthase. The elucidation of the stereochemistry of the reduction of crotonyl-CoA relied on the previously established stereochemistry of pork liver acyl-CoA dehydrogenase. The source of all 28 prochiral hydrogens of the palmitic acid synthesized by chicken liver fatty acid synthase was inferred from the results of this work.  相似文献   

17.
The following reactions catalyzed by chicken liver fatty acid synthase have been studied with the stopped-flow method in 0.1 M potassium phosphate (pH 7.0) and 1 mM ethylenediaminetetraacetic acid at 25 degrees C by monitoring the change in NADPH fluorescence: the transfer of acetoacetyl from acetoacetyl coenzyme A to the enzyme, reduction of the enzyme-bound acetoacetyl by NADPH (beta-ketoacyl reductase), and reduction of enzyme-bound D-hydroxybutyryl/crotonyl by NADPH (enoyl reductase). The first two reactions were studied by mixing enzyme-NADPH with acetoacetyl-CoA under conditions where the kinetics can be analyzed as two consecutive pseudo-first-order processes: a mechanism consistent with the aceto-acetyl-CoA dependence of the pseudo-first-order rate constant associated with formation of the aceto-acetyl-enzyme is a relatively rapid binding of substrate to the enzyme, with a dissociation constant of 650 microM, followed by formation of covalently bound acetoacetyl, with a rate constant of 10.2 s-1. The aceto-acetyl-enzyme is reduced by enzyme-bound NADPH with a rate constant of 20 s-1, and the NADPH binding is characterized by a dissociation constant of 5.3 microM. Reduction of the D-hydroxybutyryl-/crotonyl-enzyme was studied by mixing NADPH with enzyme that was equilibrated with D-hydroxybutyryl-CoA or crotonyl-CoA; the rate constant for reduction of an equilibrium mixture of D-hydroxybutyryl- and crotonyl-enzyme is 36.6 s-1. Steady-state kinetic studies of the reduction of acetoacetyl-CoA and crotonyl-CoA by NADPH also have been carried out.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of aromatic stacking interactions on the stabilization of reduced flavin adenine dinucleotide (FAD) and substrate/product have been investigated in short-chain acyl-coenzyme A dehydrogenase (SCAD) from Megasphaera elsdenii. Mutations were made at the aromatic residues Phe160 and Tyr366, which flank either face of the noncovalently bound flavin cofactor. The electrochemical properties of the mutants were then measured in the presence and absence of a butyryl-CoA/crotonyl-CoA mixture. Results from these redox studies suggest that the phenylalanine and tyrosine both engage in favorable pi-sigma interactions with the isoalloxazine ring of the flavin to help stabilize formation of the anionic flavin hydroquinone. Disruption of these interactions by replacing either residue with a leucine (F160L and Y366L) causes the midpoint potential for the oxidized/hydroquinone couple (E(ox/hq)) to shift negative by 44-54 mV. The E(ox/hq) value was also found to decrease when aromatic residues containing electron-donating heteroatoms were introduced at the 160 position. Potential shifts of -32 and -43 mV for the F160Y and F160W mutants, respectively, are attributed to increased pi-pi repulsive interactions between the ring systems. This study also provides evidence for thermodynamic regulation of the substrate/product couple in the active site of SCAD. Binding to the wild-type enzyme caused the midpoint potential for the butyryl-CoA/crotonyl-CoA couple (E(BCoA/CCoA)) to shift 14 mV negative, stabilizing the oxidized product. Formation of product was found to be even more favorable in complexes with the F160Y and F160W mutants, suggesting that the electrostatic environment around the flavin plays a role in substrate/product activation.  相似文献   

19.
Yang K  Borisov VB  Konstantinov AA  Gennis RB 《FEBS letters》2008,582(25-26):3705-3709
Cytochrome bd catalyzes the two-electron oxidation of either ubiquinol or menaquinol and the four-electron reduction of O(2) to H(2)O. In the current work, the rates of reduction of the fully oxidized and oxoferryl forms of the enzyme by the 2-electron donor ubiquinol-1 and single electron donor N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD) have been examined by stopped-flow techniques. Reduction of the all-ferric form of the enzyme is 1000-fold slower than required for a step in the catalytic cycle, whereas the observed rates of reduction of the oxoferryl and singly-reduced forms of the cytochrome are consistent with the catalytic turnover. The data support models of the catalytic cycle which do not include the fully oxidized form of the enzyme as an intermediate.  相似文献   

20.
Dwyer TM  Rao KS  Goodman SI  Frerman FE 《Biochemistry》2000,39(37):11488-11499
Glutaryl-CoA dehydrogenase catalyzes the oxidation of glutaryl-CoA to crotonyl-CoA and CO(2) in the mitochondrial degradation of lysine, hydroxylysine, and tryptophan. We have characterized the human enzyme that was expressed in Escherichia coli. Anaerobic reduction of the enzyme with sodium dithionite or substrate yields no detectable semiquinone; however, like other acyl-CoA dehydrogenases, the human enzyme stabilizes an anionic semiquinone upon reduction of the complex between the enzyme and 2,3-enoyl-CoA product. The flavin potential of the free enzyme determined by the xanthine-xanthine oxidase method is -0.132 V at pH 7.0, slightly more negative than that of related flavoprotein dehydrogenases. A single equivalent of substrate reduces 26% of the dehydrogenase flavin, suggesting that the redox equilibrium on the enzyme between substrate and product and oxidized and reduced flavin is not as favorable as that observed with other acyl-CoA dehydrogenases. This equilibrium is, however, similar to that observed in isovaleryl-CoA dehydrogenase. Comparison of steady-state kinetic constants of glutaryl-CoA dehydrogenase with glutaryl-CoA and the alternative substrates, pentanoyl-CoA and hexanoyl-CoA, suggests that the gamma-carboxyl group of glutaryl-CoA stabilizes the enzyme-substrate complex by at least 5.7 kJ/mol, perhaps by interaction with Arg94 or Ser98. Glu370 is positioned to function as the catalytic base, and previous studies indicate that the conjugate acid of Glu370 also protonates the transient crotonyl-CoA anion following decarboxylation [Gomes, B., Fendrich, G. , and Abeles, R. H. (1981) Biochemistry 20, 3154-3160]. Glu370Asp and Glu370Gln mutants of glutaryl-CoA dehydrogenase exhibit 7% and 0. 04% residual activity, respectively, with human electron-transfer flavoprotein; these mutations do not grossly affect the flavin redox potentials of the mutant enzymes. The reduced catalytic activities of these mutants can be attributed to reduced extent and rate of substrate deprotonation based on experiments with the nonoxidizable substrate analogue, 3-thiaglutaryl-CoA, and kinetic experiments. Determination of these fundamental properties of the human enzyme will serve as the basis for future studies of the decarboxylation reaction which is unique among the acyl-CoA dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号