首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cross-feeding of microbial products derived from 14C-labeled nitrifying bacteria to heterotrophic bacteria coexisting in an autotrophic nitrifying biofilm was quantitatively analyzed by using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH). After only nitrifying bacteria were labeled with [14C]bicarbonate, biofilm samples were incubated with and without NH4+ as a sole energy source for 10 days. The transfer of 14C originally incorporated into nitrifying bacterial cells to heterotrophic bacteria was monitored with time by using MAR-FISH. The MAR-FISH analysis revealed that most phylogenetic groups of heterotrophic bacteria except the β-Proteobacteria showed significant uptake of 14C-labeled microbial products. In particular, the members of the Chloroflexi were strongly MAR positive in the culture without NH4+ addition, in which nitrifying bacteria tended to decay. This indicated that the members of the Chloroflexi preferentially utilized microbial products derived from mainly biomass decay. On the other hand, the members of the Cytophaga-Flavobacterium cluster gradually utilized 14C-labeled products in the culture with NH4+ addition in which nitrifying bacteria grew. This result suggested that these bacteria preferentially utilized substrate utilization-associated products of nitrifying bacteria and/or secondary metabolites of 14C-labeled structural cell components. Our results clearly demonstrated that the coexisting heterotrophic bacteria efficiently degraded and utilized dead biomass and metabolites of nitrifying bacteria, which consequently prevented accumulation of organic waste products in the biofilm.  相似文献   

2.
Ecophysiological interactions between the community members (i.e., nitrifiers and heterotrophic bacteria) in a carbon-limited autotrophic nitrifying biofilm fed only NH(4)(+) as an energy source were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescence in situ hybridization (FISH). Phylogenetic differentiation (identification) of heterotrophic bacteria was performed by 16S rRNA gene sequence analysis, and FISH probes were designed to determine the community structure and the spatial organization (i.e., niche differentiation) in the biofilm. FISH analysis showed that this autotrophic nitrifying biofilm was composed of 50% nitrifying bacteria (ammonia-oxidizing bacteria [AOB] and nitrite-oxidizing bacteria [NOB]) and 50% heterotrophic bacteria, and the distribution was as follows: members of the alpha subclass of the class Proteobacteria (alpha-Proteobacteria), 23%; gamma-Proteobacteria, 13%; green nonsulfur bacteria (GNSB), 9%; Cytophaga-Flavobacterium-Bacteroides (CFB) division, 2%; and unidentified (organisms that could not be hybridized with any probe except EUB338), 3%. These results indicated that a pair of nitrifiers (AOB and NOB) supported a heterotrophic bacterium via production of soluble microbial products (SMP). MAR-FISH revealed that the heterotrophic bacterial community was composed of bacteria that were phylogenetically and metabolically diverse and to some extent metabolically redundant, which ensured the stability of the ecosystem as a biofilm. alpha- and gamma-Proteobacteria dominated the utilization of [(14)C]acetic acid and (14)C-amino acids in this biofilm. Despite their low abundance (ca. 2%) in the biofilm community, members of the CFB cluster accounted for the largest fraction (ca. 64%) of the bacterial community consuming N-acetyl-D-[1-(14)C]glucosamine (NAG). The GNSB accounted for 9% of the (14)C-amino acid-consuming bacteria and 27% of the [(14)C]NAG-consuming bacteria but did not utilize [(14)C]acetic acid. Bacteria classified in the unidentified group accounted for 6% of the total heterotrophic bacteria and could utilize all organic substrates, including NAG. This showed that there was an efficient food web (carbon metabolism) in the autotrophic nitrifying biofilm community, which ensured maximum utilization of SMP produced by nitrifiers and prevented buildup of metabolites or waste materials of nitrifiers to significant levels.  相似文献   

3.
This study evaluates the community structure in nitrifying granules (average diameter of 1600 μm) produced in an aerobic reactor fed with ammonia as the sole energy source by a multivalent approach combining molecular techniques, microelectrode measurements and mathematical modelling. Fluorescence in situ hybridization revealed that ammonia-oxidizing bacteria dominated within the first 200 μm below the granule surface, nitrite-oxidizing bacteria a deeper layer between 200 and 300 μm, while heterotrophic bacteria were present in the core of the nitrifying granule. Presence of these groups also became evident from a 16S rRNA clone library. Microprofiles of NH4+, NO2, NO3 and O2 concentrations measured with microelectrodes showed good agreement with the spatial organization of nitrifying bacteria. One- and two-dimensional numerical biofilm models were constructed to explain the observed granule development as a result of the multiple bacteria–substrate interactions. The interaction between nitrifying and heterotrophic bacteria was evaluated by assuming three types of heterotrophic bacterial growth on soluble microbial products from nitrifying bacteria. The models described well the bacterial distribution obtained by fluorescence in situ hybridization analysis, as well as the measured oxygen, nitrite, nitrate and ammonium concentration profiles. Results of this study are important because they show that a combination of simulation and experimental techniques can better explain the interaction between nitrifying bacteria and heterotrophic bacteria in the granules than individual approaches alone.  相似文献   

4.
A physiological study of a nitrifying sludge was carried out in a sequencing batch reactor (SBR). Pseudo steady-state nitrification conditions were obtained with an ammonium removal efficiency of 99% +/- 1% and 98% +/- 2% conversion of NH4+-N to NO3 - -N. The rate of biomass production was negligible (1.3 +/- 0.1 mg microbial protein-N.L(-1).d(-1)). The sludge presented good settling properties with sludge volume index values lower than 20 mL.g(-1) and an exopolymeric protein/carbohydrate ratio of 0.53 +/- 0.34. Kinetic results indicated that the nitrifying behavior of the sludge changed with the number of cycles. After 22 cycles, a decrease in the specific rate of NO3- -N production coupled with an increase in the NO2- -N accumulation were observed. These results showed that the activity of the nitrite oxidizing bacteria decreased at a longer operation time. Ammonia oxidizing bacteria were found to exhibit the best stability. After 4 months of operation, the specific rates of NH4+-N consumption and NO3- -N production were 1.72 NH4+-N per microbial protein-N per hour (g.g(-1).h(-1)) and 0.54 NO3- -N per microbial protein-N per hour (g.g(-1).h(-1)), respectively.  相似文献   

5.
Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.  相似文献   

6.
In this work, the heterotrophic growth on the microbial products of autotrophs and the effecting factors were evaluated with both experimental and modeling approaches. Fluorescence in situ hybridization (FISH) analysis illustrated that ammonia oxidizers (AOB), nitrite oxidizers (NOB), and heterotrophs accounted for about 65%, 20%, and 15% of the total bacteria, respectively. The mathematical evaluation of experimental data reported in literature indicated that heterotrophic growth in nitrifying biofilm (30–50%) and granules (30%) was significantly higher than that of nitrifying sludge (15%). It was found that low influent ammonium resulted in a lower availability of soluble microbial products (SMP) and a slower heterotrophic growth, but high ammonium (>150 mg N L−1) feeding would lead to purely AOB dominated sludge with high biomass‐associated products contained effluent, although the absolute heterotrophic growth increased. Meanwhile, the total active biomass concentration increased gradually with the increasing solids retention time, whereas the factions of active AOB, NOB, and heterotrophs varied a lot at different solids retention times. This work could be useful for better understanding of the autotrophic wastewater treatment systems. Biotechnol. Bioeng. 2011; 108:804–812. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
A Biofilm Airlift Suspension (BAS) reactor was operated with nitrifying biofilm growth and heterotrophic suspended growth, simultaneously converting ammonium and acetate. Growth of heterotrophs in suspension decreases the diffusion limitation for the nitrifiers, and enlarges the nitrifying capacity of a biofilm reactor. Neither nitrifiers nor heterotrophs suffer from additional oxygen diffusion limitation when the heterotrophs grow in suspension. Control of the location of heterotrophic growth, either in suspension or in biofilms over the nitrifying biofilms, was possible by manipulation of the hydraulic retention time. A time delay for formation and disappearance of the heterotrophic biofilms of 10 to 15 days was observed. Surprisingly, it was found that in the presence of the heterotrophic layers the maximum specific activity on ammonia of the nitrifying biofilms increased. The reason for the increase in activity is unknown. The effect of heterotrophic biofilm formation on oxygen diffusion limitation for the nitrifiers is discussed. Some phenomena compensating the increased mass transfer resistance due to the growth of a heterotrophic layer are also presented. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 397-405, 1997.  相似文献   

8.
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3)d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L(-1). Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosomonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662.  相似文献   

9.
Lee LY  Ong SL  Ng HY  Hu JY  Koh YN 《Bioresource technology》2008,99(14):6614-6620
Simultaneous ammonium-nitrogen (NH(4)(+)-N) and copper removal, and copper recovery in synthetic wastewater using nitrifying biofilm from an ultra-compact biofilm reactor (UCBR) was demonstrated in batch studies, which consisted of three phases: Phase 1 for NH(4)(+)-N and copper removals, Phase 2 for copper recovery, and Phase 3 for NH(4)(+)-N removal. The results showed that more than 96.3% of copper was removed within 60min, while 60.1% of the adsorbed copper was recovered through rinsing the biofilms with 0.1mM of ethylenediaminetetraacetic acid (EDTA). The nitrifying biofilm was able to adsorb 0.245mg of copper/g of biofilms. After recovery treatment, 29.4% of copper remained bound within the nitrifying biofilms. No significant inhibitory effects towards NH(4)(+)-N removal in the presence of 0.92mg copper/L was noted in Phase 1 compared with the control test. However, lower initial pH condition in the recovery process and the accumulation of copper on the biofilm led to 50% inhibition on NH(4)(+)-N removal efficiency in the subsequent phase.  相似文献   

10.
反应器的群落结构分析有助于对工业装置的故障原因进行诊断。为了解决某焦化废水处理装置硝化功能低下的故障,构建了一套相似的实验室装置作为参照系统,该装置的硝化功能良好。通过工业装置和实验室装置好氧池生物膜16SrDNA克隆文库的比较,分析了它们之间硝化菌群的组成差异。实验室装置克隆文库的构成说明Nitrosomonas europaea-Nitrosoccus mobilis类群和Nitrospira属Ⅰ亚区系分别是该工艺条件下优势的氨氧化菌和亚硝酸氧化菌,但工业装置的克隆文库中却没有找到任何与硝化菌序列相近的克隆,这说明工业装置中硝化菌的多度较低。进一步使用Taqman荧光探针实时定量PCR测定了样品中Nitrospira属的多度,实验室装置中Nitrospira属16S rDNA的拷贝数达到3.4×106个/微克基因组DNA,而工业装置的测定值不到实验室装置的1/300。这些试验结果都表明工业装置好氧池微生物群落中缺少适当的硝化菌群是造成其硝化能力低下的重要原因。提高菌群中Nitrosomonas属和Nitrospira属的多度是解决工业装置硝化能力低下的关键。  相似文献   

11.
Addition of hydroxylamine (NH2OH) to autotrophic biomass in nitrifying bioreactors affected the activity, physical structure, and microbial ecology of nitrifying aggregates. When NH2OH is added to nitrifying cultures in 6-h batch experiments, the initial NH3-N uptake rates were physiologically accelerated by a factor of 1.4-13. NH2OH addition caused a 20-40% decrease in the median aggregate size, broadened the shape of the aggregate size distribution by up to 230%, and caused some of the microcolonies to appear slightly more dispersed. Longer term NH2OH addition in fed batch bioreactors decreased the median aggregate size, broadened the aggregate size distribution, and decreased NH3-N removal from >90% to values ranging between 75% and 17%. This altered performance is explained by quantitative fluorescence in situ hybridization (FISH) results that show inhibition of nitrifying populations, and by qPCR results showing that the copy numbers of amoA and nxrA genes gradually decreased by up to an order-of-magnitude. Longer term NH2OH addition damaged the active biomass. This research clarifies the effect of NH2OH on nitrification and demonstrates the need to incorporate NH2OH-related dynamics of the nitrifying biomass into mathematical models, accounting for both ecophysiological and structural responses.  相似文献   

12.
The spatial distribution and activities of nitrifying and denitrifying bacteria in sponge media were investigated using diverse tools, because understanding of in situ microbial condition of sponge phase is critical for the successful design and operation of sponge media process. The bacterial consortia within the media was composed of diverse groups including a 14.5% Nitrosomonas spp.-like ammonia oxidizing bacteria (AOB), 12.5% Nitrobacter spp.-like nitrite oxidizing bacteria (NOB), 2.0% anaerobic ammonium-oxidizing (ANAMMOX) bacteria and 71.0% other bacteria. The biofilm appeared to be most dense in the relatively outer region of the media and gradually decreased with depth, but bacterial viabilities showed space-independent feature. The fluorescent in situ hybridization results revealed that AOB and NOB co-existed in similar quantities on the side fragments of the media, which was reasonably supported by the microelectrode measurements showing the concomitant oxidation of NH(4) (+) and production of NO(3) (-) in this zone. However, a significantly higher fraction of AOB was observed in the center than side fragment. As with the overall biofilm density profile, the denitrifying bacteria were also more abundant on the side than in the center fragments. ANAMMOX bacteria detected throughout the entire depth offer another advantage for the removal of nitrogen by simultaneously converting NH(4) (+) and NO(2) (-) to nitrogen gas.  相似文献   

13.
Determination of the decay rate of nitrifying bacteria   总被引:9,自引:0,他引:9  
The growth and decay of nitrifying organisms determines the amount of nitrifying bacteria in activated sludge systems. The growth rate of the nitrifying organisms is reasonable, well defined, and studied, while the decay rate is still rather uncertain. Experiments in previous studies were over periods up to 14 days and obtained results were not confirmed. Contradicting decay rates of nitrifiers in different bacterial communities is reported. No differentiation between ammonia and nitrite oxidizers was made. Therefore, in this studyper day the decay rate of the nitrifying organisms was studied. The starvation condition (aerobic, anoxic, or anaerobic), temperature, type of bacterial community, and the presence of higher organisms are the main aspects that were investigated. A simple and reliable method (adapted from previous studies) for determining the decay rate of nitrifying organisms under different starvation conditions and different temperatures was developed. The test procedure has been used for determining the decay rate of ammonium and nitrite oxidizing bacteria in an enriched nitrifying culture and in activated sludge. The test was successfully applied at starvation periods up to 30 days. The decay rate of the enriched culture of nitrifiers was very low compared to values for nitrifiers in activated sludge. The decay rate of the nitrifiers in activated sludge was found to be to 0.2, 0.1, and 0.06 per day for aerobic, anoxic, and anaerobic conditions, respectively. The decay rate of ammonia oxidizers and nitrite oxidizers was the same at the corresponding conditions.  相似文献   

14.
Cryosectioned biofilm from three depths (0.5, 3.0 and 6.0 m) in a full-scale nitrifying trickling filter (NTF) were studied using fluorescence in situ hybridization (FISH). A large number of sections were used to determine how the biofilm thickness, structure and community composition varied with depth along the ammonium concentration gradient in the NTF, and how the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were distributed vertically within the biofilm. Both the biofilm thickness and relative biomass content of the biofilm decreased with depth, along with structural differences such as void size and surface roughness. Four AOB populations were found, with two Nitrosomonas oligotropha populations dominating at all depths. A smaller population of Nitrosomonas europaea was present only at 0.5 m, while a population of Nitrosomonas communis increased with depth. The two N. oligotropha populations showed different vertical distribution patterns within the biofilm, indicating different ecophysiologies even though they belong to the same AOB lineage. All NOB were identified as Nitrospira sp., and were generally more associated with the biofilm base than the surface-associated dominating AOB population. Additionally, a small population of anaerobic ammonia-oxidizers was found at 6.0 m, even though the biofilm was well aerated.  相似文献   

15.
16.

The moving bed biofilm reactor (MBBR), operated as a post carbon removal system, requires long start-up times in comparison to carbon removal systems due to slow growing autotrophic organisms. This study investigates the use of carriers seeded in a carbon rich treatment system prior to inoculation in a nitrifying MBBR system to promote the rapid development of nitrifying biofilm in an MBBR system at temperatures between 6 and 8 °C. Results show that nitrification was initiated by the carbon removal carriers after 22 h of operation. High throughput 16S-rDNA sequencing indicates that the sloughing period was a result of heterotrophic organism detachment and the recovery and stabilization period included a growth of Nitrosomonas and Nitrospira as the dominant ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) in the biofilm. Peripheral microorganisms such as Myxococcales, a rapid EPS producer, appear to have contributed to the recovery and stabilization of the biofilm.

  相似文献   

17.
A mathematical model system was derived to describe the kinetics of ammonium nitrification in a fixed biofilm reactor using dewatered sludge-fly ash composite ceramic particle as a supporting medium. The model incorporates diffusive mass transport and Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear’s method. A batch test was conducted to observe the nitrification of ammonium-nitrogen ( \({\text{NH}}_{4}^{ + }\) -N) and the growth of nitrifying biomass. The compositions of nitrifying bacterial community in the batch kinetic test were analyzed using PCR–DGGE method. The experimental results show that the most staining intensity abundance of bands occurred on day 2.75 with the highest biomass concentration of 46.5 mg/L. Chemostat kinetic tests were performed independently to evaluate the biokinetic parameters used in the model prediction. In the column test, the removal efficiency of \({\text{NH}}_{4}^{ + }\) -N was approximately 96 % while the concentration of suspended nitrifying biomass was approximately 16 mg VSS/L and model-predicted biofilm thickness reached up to 0.21 cm in the steady state. The profiles of denaturing gradient gel electrophoresis (DGGE) of different microbial communities demonstrated that indigenous nitrifying bacteria (Nitrospira and Nitrobacter) existed and were the dominant species in the fixed biofilm process.  相似文献   

18.
We simultaneously determined the phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria (SRB) inhabiting a sewer biofilm with oxygen, nitrate, or sulfate as an electron acceptor by combining microautoradiography and fluorescent in situ hybridization (MAR-FISH) with family- and genus-specific 16S rRNA probes. The MAR-FISH analysis revealed that Desulfobulbus hybridized with probe 660 was a dominant SRB subgroup in this sewer biofilm, accounting for 23% of the total SRB. Approximately 9 and 27% of Desulfobulbus cells detected with probe 660 could take up [(14)C]propionate with oxygen and nitrate, respectively, as an electron acceptor, which might explain the high abundance of this species in various oxic environments. Furthermore, more than 40% of Desulfobulbus cells incorporated acetate under anoxic conditions. SRB were also numerically important members of H(2)-utilizing and (14)CO(2)-fixing microbial populations in this sewer biofilm, accounting for roughly 42% of total H(2)-utilizing bacteria hybridized with probe EUB338. A comparative 16S ribosomal DNA analysis revealed that two SRB populations, related to the Desulfomicrobium hypogeium and the Desulfovibrio desulfuricans MB lineages, were found to be important H(2) utilizers in this biofilm. The substrate uptake characteristics of different phylogenetic SRB subgroups were compared with the characteristics described to date. These results provide further insight into the correlation between the 16S rRNA phylogenetic diversity and the physiological diversity of SRB populations inhabiting sewer biofilms.  相似文献   

19.
For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.  相似文献   

20.
As water distribution centres increasingly switch to using chloramine to disinfect drinking water, it is of paramount importance to determine the interactions of chloramine with potential biological contaminants, such as bacterial biofilms, that are found in these systems. For example, ammonia-oxidizing bacteria (AOB) are known to accelerate the decay of chloramine in drinking water systems, but it is also known that organic compounds can increase the chloramine demand. This study expanded upon our previously published model to compare the decay of chloramine in response to alginate, Pseudomonas aeruginosa, Nitrosomonas europaea and a mixed-species nitrifying culture, exploring the contributions of microbial by-products, heterotrophic bacteria and AOBs to chloramine decay. Furthermore, the contribution of AOBs to biofilm stability during chloramination was investigated. The results demonstrate that the biofilm matrix or extracellular polymeric substances (EPS), represented by alginate in these experiments, as well as high concentrations of dead or inactive cells, can drive chloramine decay rather than any specific biochemical activity of P. aeruginosa cells. Alginate was shown to reduce chloramine concentrations in a dose-dependent manner at an average rate of 0.003 mg l−1 h−1 per mg l−1 of alginate. Additionally, metabolically active AOBs mediated the decay of chloramine, which protected members of mixed-species biofilms from chloramine-mediated disinfection. Under these conditions, nitrite produced by AOBs directly reacted with chloramine to drive its decay. In contrast, biofilms of mixed-species communities that were dominated by heterotrophic bacteria due to either the absence of ammonia, or the addition of nitrification inhibitors and glucose, were highly sensitive to chloramine. These results suggest that mixed-species biofilms are protected by a combination of biofilm matrix-mediated inactivation of chloramine as well as the conversion of ammonia to nitrite through the activity of AOBs present in the community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号