首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Smoothened translates Hedgehog levels into distinct responses   总被引:3,自引:0,他引:3  
  相似文献   

3.
4.
5.
Vascular development begins with formation of a primary capillary plexus that is later remodeled to give rise to the definitive vasculature. Although the mechanism by which arterial and venous fates are acquired is well understood, little is known about when during vascular development arterial and venous vessels emerge and how their growth is regulated. Previously, we have demonstrated that a hedgehog (HH)/vascular endothelial growth factor (VEGF) and angiopoeitin 2 (ANG2) signaling pathway is essential for the development of the coronary vasculature. Here, we use conditional gene targeting to identify the cell types that receive HH signaling and mediate coronary vascular development. We show that HH signaling to the cardiomyoblast is required for the development of coronary veins, while HH signaling to the perivascular cell (PVC) is necessary for coronary arterial growth. Moreover, the cardiomyoblast and PVC appear to be the exclusive cell types that receive HH signals, as ablation of HH signaling in both cell types leads to an arrest in coronary development. Finally, we present evidence suggesting that coronary arteries and veins may be derived from distinct lineages.  相似文献   

6.
7.
The Hedgehog signaling pathway plays an essential role in embryo development and adult tissue homeostasis, in regulating stem cells and is abnormally activated in many cancers. Given the importance of this signaling pathway, we developed a novel and versatile high-throughput, cell-based screening platform using confocal imaging, based on the role of β-arrestin in Hedgehog signal transduction, that can identify agonists or antagonist of the pathway by a simple change to the screening protocol. Here we report the use of this assay in the antagonist mode to identify novel antagonists of Smoothened, including a compound (A8) with low nanomolar activity against wild-type Smo also capable of binding the Smo point mutant D473H associated with clinical resistance in medulloblastoma. Our data validate this novel screening approach in the further development of A8 and related congeners to treat hedgehog related diseases, including the treatment of basal cell carcinoma and medulloblastoma.  相似文献   

8.
9.
It has been long considered that zinc homeostasis in bacteria is maintained by export systems and uptake systems, which are separately controlled by their own regulators and the uptake systems are negatively regulated by Zur which binds to an about 30-bp AT-rich sequence known as Zur-box present in its target promoters to block the entry of RNA polymerase. Here, we demonstrated in vivo and in vitro that in addition to act as a repressor of putative Zn(2+)-uptake systems, the Zur of the bacterial phytopathogen Xanthomonas campestris pathovar campestris (Xcc) acts as an activator of a Zn(2+) efflux pump. The Xcc Zur binds to a similar Zur-box with approximately 30-bp AT-rich sequence in the promoters of the genes encoding putative Zn(2+)-uptake systems but a 59-bp GC-rich sequence with a 20-bp inverted repeat overlapping the promoter's -35 to -10 sequence of the gene encoding a Zn(2+)-export system. Mutagenesis of the inverted repeat sequence resulted in abolishment of the in vitro binding and the in vivo and in vitro activation of the export gene's promoter by Zur. These results reveal that the Xcc Zur functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters.  相似文献   

10.
The Hedgehog (Hh) family of secreted proteins plays essential roles in the development of a wide variety of animal species and underlies multiple human birth defects and cancers.To.ensure the proper ra...  相似文献   

11.
12.
Hedgehog (Hh) proteins are morphogens that mediate many developmental processes. Hh signaling is significant for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hh proteins require heparan sulfate proteoglycans (HSPGs) for their normal distribution and signaling activity. Here, we have used molecular modeling to examine the heparin-binding domain of sonic hedgehog (Shh). In biochemical and cell biological assays, the importance of specific residues of the putative heparin-binding domain for signaling was assessed. It was determined that key residues in human (h) Shh involved in heparin and HSPG syndecan-4 binding and biological activity included the well known cationic Cardin-Weintraub motif (lysines 32-38) but also a previously unidentified major role for lysine 178. The activity of Shh mutated in these residues was tested by quantitation of alkaline phosphatase activity in C3H10T1/2 cells differentiating into osteoblasts and hShh-inducible gene expression in PANC1 human pancreatic ductal adenocarcinoma cells. Mutated hShhs such as K37S/K38S, K178S, and particularly K37S/K38S/K178S that could not interact with heparin efficiently had reduced signaling activity compared with wild type hShh or a control mutation (K74S). In addition, the mutant hShh proteins supported reduced proliferation and invasion of PANC1 cells compared with control hShh proteins, following endogenous hShh depletion by RNAi knockdown. The data correlated with reduced Shh multimerization where the Lys-37/38 and/or Lys-178 mutations were examined. These studies provide a new insight into the functional roles of hShh interactions with HSPGs, which may allow targeting this aspect of hShh biology in, for example, pancreatic ductal adenocarcinoma.  相似文献   

13.
The Hedgehog pathway, critical to vertebrate development, is organized in primary cilia. Activation of signaling causes the Hedgehog receptor Ptch1 to exit cilia, allowing a second receptor, Smo, to accumulate in cilia and activate the downstream steps of the pathway. Mechanisms regulating the dynamics of these receptors are unknown, but the ubiquitination of Smo regulates its interaction with the intraflagellar transport system to control ciliary levels. A focused screen of ubiquitin-related genes identified nine required for maintaining low ciliary Smo at the basal state. These included cytoplasmic E3s (Arih2, Mgrn1, and Maea), a ciliary localized E3 (Wwp1), a ciliary localized E2 (Ube2l3), a deubiquitinase (Bap1), and three adaptors (Kctd5, Skp1a, and Skp2). The ciliary E3, Wwp1, binds Ptch1 and localizes to cilia at the basal state. Activation of signaling removes both Ptch1 and Wwp1 from cilia, thus providing an elegant mechanism for Ptch1 to regulate ciliary Smo levels.  相似文献   

14.
Embryonic Hedgehog signaling is essential for proper tissue morphogenesis and organ formation along the developing gastrointestinal tract. Hedgehog ligands are expressed throughout the endodermal epithelium at early embryonic stages but excluded from the region that will form the pancreas. Ectopic activation of Hedgehog signaling at the onset of pancreas development has been shown to inhibit organ morphogenesis. In contrast, Hedgehog signaling components are found within pancreatic tissue during subsequent stages of development as well as in the mature organ, indicating that a certain level of pathway activation is required for normal organ development and function. Here, we ectopically activate the Hedgehog pathway midway through pancreas development via expression of either Sonic (Shh) or Indian Hedgehog (Ihh) under control of the human Pax4-promoter. Similar pancreatic defects are observed in both Pax4-Shh and Pax4-Ihh transgenic lines, suggesting that regulation of the overall level of Hedgehog activity is critical for proper pancreas development. We also show that Hedgehog signaling controls mesenchymal vs. epithelial tissue differentiation and that pathway activation impairs formation of epithelial progenitors. Thus, tight control of Hedgehog pathway activity throughout embryonic development ensures proper pancreas organogenesis.  相似文献   

15.
Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms   总被引:2,自引:0,他引:2       下载免费PDF全文
The p53 protein maintains genomic integrity through its ability to induce cell cycle arrest or apoptosis in response to various forms of stress. Substantial regulation of p53 activity occurs at the level of protein stability, largely determined by the activity of the Mdm2 protein. Mdm2 targets both p53 and itself for ubiquitylation and subsequent proteasomal degradation by acting as an ubiquitin ligase, a function that needs an intact Mdm2 RING finger. For efficient degradation of p53 nuclear export appears to be required. The Mdmx protein, structurally homologous to Mdm2, does not target p53 for degradation, but even stabilizes both p53 and Mdm2, an activity most likely mediated by heterodimerization of the RING fingers of Mdm2 and Mdmx. Here we show that Mdmx expression leads to accumulation of ubiquitylated, nuclear p53 but does not significantly affect the Mdm2-mediated ubiquitylation of p53. In contrast, Mdmx stabilizes Mdm2 by inhibiting its self-ubiquitylation.  相似文献   

16.
17.
G-protein-coupled receptor kinases (GRKs) play a conserved role in Hedgehog (Hh) signaling. In several systems, GRKs are required for efficient Hh target gene expression. Their principal target appears to be Smoothened (Smo), the intracellular signal-generating component of the pathway and a member of the G-protein-coupled receptor (GPCR) protein family. In Drosophila, a GRK called Gprk2 is needed for internalization and downregulation of activated Smo, consistent with the typical role of these kinases in negatively regulating GPCRs. However, Hh target gene activation is strongly impaired in gprk2 mutant flies, indicating that Gprk2 must also positively regulate Hh signaling at some level. To investigate its function in signaling, we analyzed several different readouts of Hh pathway activity in animals or cells lacking Gprk2. Surprisingly, although target gene expression was impaired, Smo-dependent activation of downstream components of the signaling pathway was increased in the absence of Gprk2. This suggests that Gprk2 does indeed play a role in terminating Smo signaling. However, loss of Gprk2 resulted in a decrease in cellular cAMP concentrations to a level that was limiting for Hh target gene activation. Normal expression of target genes was restored in gprk2 mutants by stimulating cAMP production or activating the cAMP-dependent Protein kinase A (Pka). Our results suggest that direct regulation of Smo by Gprk2 is not absolutely required for Hh target gene expression. Gprk2 is important for normal cAMP regulation, and thus has an indirect effect on the activity of Pka-regulated components of the Hh pathway, including Smo itself.  相似文献   

18.
The midbrain and anterior hindbrain offer an ideal system in which to study the coordination of tissue growth and patterning in three dimensions. Two organizers that control anteroposterior (AP) and dorsoventral (DV) development are known, and the regulation of AP patterning by Fgf8 has been studied in detail. Much less is known about the mechanisms that control mid/hindbrain development along the DV axis. Using a conditional mutagenesis approach, we have determined how the ventrally expressed morphogen sonic hedgehog (Shh) directs mid/hindbrain development over time and space through positive regulation of the Gli activators (GliA) and inhibition of the Gli3 repressor (Gli3R). We have discovered that Gli2A-mediated Shh signaling sequentially induces ventral neurons along the medial to lateral axis, and only before midgestation. Unlike in the spinal cord, Shh signaling plays a major role in patterning of dorsal structures (tectum and cerebellum). This function of Shh signaling involves inhibition of Gli3R and continues after midgestation. Gli3R levels also regulate overall growth of the mid/hindbrain region, and this largely involves the suppression of cell death. Furthermore, inhibition of Gli3R by Shh signaling is required to sustain expression of the AP organizer gene Fgf8. Thus, the precise spatial and temporal regulation of Gli2A and Gli3R by Shh is instrumental in coordinating mid/hindbrain development in three dimensions.  相似文献   

19.
Hedgehog (Hh) signaling is essential for embryonic development and adult homeostasis. How its signaling activity is fine-tuned in response to fluctuated Hh gradient is less known. Here, we identify protein phosphatase V (PpV), the catalytic subunit of protein phosphatase 6, as a homeostatic regulator of Hh signaling. PpV is genetically upstream of widerborst (wdb), which encodes a regulatory subunit of PP2A that modulates high-level Hh signaling. We show that PpV negatively regulates Wdb stability independent of phosphatase activity of PpV, by competing with the catalytic subunit of PP2A for Wdb association, leading to Wdb ubiquitination and subsequent proteasomal degradation. Thus, regulated Wdb stability, maintained through competition between two closely related phosphatases, ensures graded Hh signaling. Interestingly, PpV expression is regulated by Hh signaling. Therefore, PpV functions as a Hh activity sensor that regulates Wdb-mediated PP2A activity through feedback mechanisms to maintain Hh signaling homeostasis.  相似文献   

20.
Ortho-biphenyl carboxamides, originally prepared as inhibitors of microsomal triglyceride transfer protein (MTP) have been identified as novel inhibitors of the Hedgehog signaling pathway. Structure–activity relationship studies for this class of compounds reduced MTP inhibitory activity and led to low nanomolar Hedgehog inhibitors. Binding assays revealed that the compounds act as antagonists of Smoothened and show cross-reactivity for both the human and mouse receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号