首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have conducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predominantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, functional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD relations that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based network alone.  相似文献   

2.
Hu  Jialu  Gao  Yiqun  Li  Jing  Zheng  Yan  Wang  Jingru  Shang  Xuequn 《BMC bioinformatics》2019,20(18):1-12
Background

It’s a very urgent task to identify cancer genes that enables us to understand the mechanisms of biochemical processes at a biomolecular level and facilitates the development of bioinformatics. Although a large number of methods have been proposed to identify cancer genes at recent times, the biological data utilized by most of these methods is still quite less, which reflects an insufficient consideration of the relationship between genes and diseases from a variety of factors.

Results

In this paper, we propose a two-rounds random walk algorithm to identify cancer genes based on multiple biological data (TRWR-MB), including protein-protein interaction (PPI) network, pathway network, microRNA similarity network, lncRNA similarity network, cancer similarity network and protein complexes. In the first-round random walk, all cancer nodes, cancer-related genes, cancer-related microRNAs and cancer-related lncRNAs, being associated with all the cancer, are used as seed nodes, and then a random walker walks on a quadruple layer heterogeneous network constructed by multiple biological data. The first-round random walk aims to select the top score k of potential cancer genes. Then in the second-round random walk, genes, microRNAs and lncRNAs, being associated with a certain special cancer in corresponding cancer class, are regarded as seed nodes, and then the walker walks on a new quadruple layer heterogeneous network constructed by lncRNAs, microRNAs, cancer and selected potential cancer genes. After the above walks finish, we combine the results of two-rounds RWR as ranking score for experimental analysis. As a result, a higher value of area under the receiver operating characteristic curve (AUC) is obtained. Besides, cases studies for identifying new cancer genes are performed in corresponding section.

Conclusion

In summary, TRWR-MB integrates multiple biological data to identify cancer genes by analyzing the relationship between genes and cancer from a variety of biological molecular perspective.

  相似文献   

3.
Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein–protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis.  相似文献   

4.

Background

Polygenic diseases are usually caused by the dysfunction of multiple genes. Unravelling such disease genes is crucial to fully understand the genetic landscape of diseases on molecular level. With the advent of ‘omic’ data era, network-based methods have prominently boosted disease gene discovery. However, how to make better use of different types of data for the prediction of disease genes remains a challenge.

Results

In this study, we improved the performance of disease gene prediction by integrating the similarity of disease phenotype, biological function and network topology. First, for each phenotype, a phenotype-specific network was specially constructed by mapping phenotype similarity information of given phenotype onto the protein-protein interaction (PPI) network. Then, we developed a gene gravity-like algorithm, to score candidate genes based on not only topological similarity but also functional similarity. We tested the proposed network and algorithm by conducting leave-one-out and leave-10%-out cross validation and compared them with state-of-art algorithms. The results showed a preference to phenotype-specific network as well as gene gravity-like algorithm. At last, we tested the predicting capacity of proposed algorithms by test gene set derived from the DisGeNET database. Also, potential disease genes of three polygenic diseases, obesity, prostate cancer and lung cancer, were predicted by proposed methods. We found that the predicted disease genes are highly consistent with literature and database evidence.

Conclusions

The good performance of phenotype-specific networks indicates that phenotype similarity information has positive effect on the prediction of disease genes. The proposed gene gravity-like algorithm outperforms the algorithm of Random Walk with Restart (RWR), implicating its predicting capacity by combing topological similarity with functional similarity. Our work will give an insight to the discovery of disease genes by fusing multiple similarities of genes and diseases.
  相似文献   

5.
The molecular complexity of genetic diseases requires novel approaches to break it down into coherent biological modules. For this purpose, many disease network models have been created and analyzed. We highlight two of them, “the human diseases networks” (HDN) and “the orphan disease networks” (ODN). However, in these models, each single node represents one disease or an ambiguous group of diseases. In these cases, the notion of diseases as unique entities reduces the usefulness of network-based methods. We hypothesize that using the clinical features (pathophenotypes) to define pathophenotypic connections between disease-causing genes improve our understanding of the molecular events originated by genetic disturbances. For this, we have built a pathophenotypic similarity gene network (PSGN) and compared it with the unipartite projections (based on gene-to-gene edges) similar to those used in previous network models (HDN and ODN). Unlike these disease network models, the PSGN uses semantic similarities. This pathophenotypic similarity has been calculated by comparing pathophenotypic annotations of genes (human abnormalities of HPO terms) in the “Human Phenotype Ontology”. The resulting network contains 1075 genes (nodes) and 26197 significant pathophenotypic similarities (edges). A global analysis of this network reveals: unnoticed pairs of genes showing significant pathophenotypic similarity, a biological meaningful re-arrangement of the pathological relationships between genes, correlations of biochemical interactions with higher similarity scores and functional biases in metabolic and essential genes toward the pathophenotypic specificity and the pleiotropy, respectively. Additionally, pathophenotypic similarities and metabolic interactions of genes associated with maple syrup urine disease (MSUD) have been used to merge into a coherent pathological module.Our results indicate that pathophenotypes contribute to identify underlying co-dependencies among disease-causing genes that are useful to describe disease modularity.  相似文献   

6.
7.
MOTIVATION: The inference of genes that are truly associated with inherited human diseases from a set of candidates resulting from genetic linkage studies has been one of the most challenging tasks in human genetics. Although several computational approaches have been proposed to prioritize candidate genes relying on protein-protein interaction (PPI) networks, these methods can usually cover less than half of known human genes. RESULTS: We propose to rely on the biological process domain of the gene ontology to construct a gene semantic similarity network and then use the network to infer disease genes. We show that the constructed network covers about 50% more genes than a typical PPI network. By analyzing the gene semantic similarity network with the PPI network, we show that gene pairs tend to have higher semantic similarity scores if the corresponding proteins are closer to each other in the PPI network. By analyzing the gene semantic similarity network with a phenotype similarity network, we show that semantic similarity scores of genes associated with similar diseases are significantly different from those of genes selected at random, and that genes with higher semantic similarity scores tend to be associated with diseases with higher phenotype similarity scores. We further use the gene semantic similarity network with a random walk with restart model to infer disease genes. Through a series of large-scale leave-one-out cross-validation experiments, we show that the gene semantic similarity network can achieve not only higher coverage but also higher accuracy than the PPI network in the inference of disease genes.  相似文献   

8.
风险致病基因预测有助于揭示癌症等复杂疾病发生、发展机理,提高现有复杂疾病检测、预防及治疗水平,为药物设计提供靶标.全基因组关联分析(GWAS)和连锁分析等传统方法通常会产生数百种候选致病基因,采用生物实验方法进一步验证这些候选致病基因往往成本高、费时费力,而通过计算方法预测风险致病基因,并对其进行排序,可有效减少候选致病基因数量,帮助生物学家优化实验验证方案.鉴于目前随机游走算法在风险致病基因预测方面的卓越表现,本文从单元分子网络、多重分子网络和异构分子网络出发,对基于随机游走预测风险致病基因研究进展进行较全面的综述分析,讨论其所存在的计算问题,展望未来可能的研究方向.  相似文献   

9.
MOTIVATION: Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. RESULTS: We propose a novel method to infer genetic networks by alleviating the shortage of available mRNA expression data with prior knowledge. We call the proposed method 'modularized network learning' (MONET). Firstly, the proposed method divides a whole gene set to overlapped modules considering biological annotations and expression data together. Secondly, it infers a Bayesian network for each module, and integrates the learned subnetworks to a global network. An algorithm that measures a similarity between genes based on hierarchy, specificity and multiplicity of biological annotations is presented. The proposed method draws a global picture of inter-module relationships as well as a detailed look of intra-module interactions. We applied the proposed method to analyze Saccharomyces cerevisiae stress data, and found several hypotheses to suggest putative functions of unclassified genes. We also compared the proposed method with a whole-set-based approach and two expression-based clustering approaches.  相似文献   

10.
The human papillomavirus (HPV), a common virus that infects the reproductive tract, may lead to malignant changes within the infection area in certain cases and is directly associated with such cancers as cervical cancer, anal cancer, and vaginal cancer. Identification of novel HPV infection related genes can lead to a better understanding of the specific signal pathways and cellular processes related to HPV infection, providing information for the development of more efficient therapies. In this study, several novel HPV infection related genes were predicted by a computation method based on the known genes involved in HPV infection from HPVbase. This method applied the algorithm of random walk with restart (RWR) to a protein-protein interaction (PPI) network. The candidate genes were further filtered by the permutation and association tests. These steps eliminated genes occupying special positions in the PPI network and selected key genes with strong associations to known HPV infection related genes based on the interaction confidence and functional similarity obtained from published databases, such as STRING, gene ontology (GO) terms and KEGG pathways. Our study identified 104 novel HPV infection related genes, a number of which were confirmed to relate to the infection processes and complications of HPV infection, as reported in the literature. These results demonstrate the reliability of our method in identifying HPV infection related genes.This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.  相似文献   

11.
Increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in and associated with many complex human diseases. Despite of the accumulation of lncRNA-disease associations, only a few studies had studied the roles of these associations in pathogenesis. In this paper, we investigated lncRNA-disease associations from a network view to understand the contribution of these lncRNAs to complex diseases. Specifically, we studied both the properties of the diseases in which the lncRNAs were implicated, and that of the lncRNAs associated with complex diseases. Regarding the fact that protein coding genes and lncRNAs are involved in human diseases, we constructed a coding-non-coding gene-disease bipartite network based on known associations between diseases and disease-causing genes. We then applied a propagation algorithm to uncover the hidden lncRNA-disease associations in this network. The algorithm was evaluated by leave-one-out cross validation on 103 diseases in which at least two genes were known to be involved, and achieved an AUC of 0.7881. Our algorithm successfully predicted 768 potential lncRNA-disease associations between 66 lncRNAs and 193 diseases. Furthermore, our results for Alzheimer''s disease, pancreatic cancer, and gastric cancer were verified by other independent studies.  相似文献   

12.
One of the most important tasks of modern bioinformatics is the development of computational tools that can be used to understand and treat human disease. To date, a variety of methods have been explored and algorithms for candidate gene prioritization are gaining in their usefulness. Here, we propose an algorithm for detecting gene-disease associations based on the human protein-protein interaction network, known gene-disease associations, protein sequence, and protein functional information at the molecular level. Our method, PhenoPred, is supervised: first, we mapped each gene/protein onto the spaces of disease and functional terms based on distance to all annotated proteins in the protein interaction network. We also encoded sequence, function, physicochemical, and predicted structural properties, such as secondary structure and flexibility. We then trained support vector machines to detect gene-disease associations for a number of terms in Disease Ontology and provided evidence that, despite the noise/incompleteness of experimental data and unfinished ontology of diseases, identification of candidate genes can be successful even when a large number of candidate disease terms are predicted on simultaneously. Availability: www.phenopred.org.  相似文献   

13.
Pan W 《Human genetics》2008,124(3):225-234
For genome-wide association studies, it has been increasingly recognized that the popular locus-by-locus search for DNA variants associated with disease susceptibility may not be effective, especially when there are interactions between or among multiple loci, for which a multi-loci search strategy may be more productive. However, even if computationally feasible, a genome-wide search over all possible multiple loci requires exploring a huge model space and making costly adjustment for multiple testing, leading to reduced statistical power. On the other hand, there are accumulating data suggesting that protein products of many disease-causing genes tend to interact with each other, or cluster in the same biological pathway. To incorporate this prior knowledge and existing data on gene networks, we propose a gene network-based method to improve statistical power over that of the exhaustive search by giving higher weights to models involving genes nearby in a network. We use simulated data under realistic scenarios, including a large-scale human protein–protein interaction network and 23 known ataxia-causing genes, to demonstrate potential gain by our proposed method when disease-genes are clustered in a network.  相似文献   

14.
We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases.  相似文献   

15.
Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways.  相似文献   

16.
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.  相似文献   

17.
Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of "balancer" proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the "elasticity" of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.  相似文献   

18.
19.
A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting) to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE''s predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.  相似文献   

20.
The genome sequences completed so far contain more than 20 000 genes with unknown function and no similarity to genes in other genomes. The origin and evolution of the orphan genes is an enigma. Here, we discuss the suggestion that some orphan genes may represent pseudogenes or short fragments of genes that were functional in the genome of a common ancestor. These may be the remains of unsuccessful duplication or horizontal gene transfer events, in which the acquired sequences have entered the fragmentation process and thereby lost their similarity to genes in other species. This scenario is supported by a recent case study of orphan genes in several closely related species of Rickettsia, where full-length ancestral genes were reconstructed from sets of short, overlapping orphan genes. One of these was found to display similarity to genes encoding proteins with ankyrin-repeat domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号