首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In large deep oligotrophic lakes, the shallow nearshore waters may provide the most important habitat for animals to feed and breed, and it is this area of the lake where humans are most likely to have initial impacts as the shoreline is developed. Nutrients in fertilizers, sediments and sewage effluents are likely to be rapidly intercepted by nearshore algae at the lake edge, having heterogeneous effects nearshore before offshore effects are noted. 2. Here we examined the spatially explicit effects of residential development on nearshore periphyton communities in three large deep oligotrophic lakes that have all experienced modest residential development in the Pacific Northwest of the United States. We demonstrate that substantial nearshore changes in the basal food web are detectable even with low levels of shoreline development. These changes can potentially affect whole‐lake food web dynamics. 3. For our primary study site (Lake Crescent, Washington, USA), we found that algal biomass and accumulation of detritus were higher at developed sites. In addition, both macroinvertebrate and periphyton communities exhibited a shift in composition with more detritivores and filamentous green algae at developed sites. These differences were more pronounced during the spring than at other times of year. 4. A complementary investigation of field patterns in Priest Lake and Lake Pend Oreille (Idaho, USA) suggested that, although spatial and temporal patterns were idiosyncratic, indicators of productivity and the presence of filamentous green algae were generally higher at developed sites across lakes. 5. Stable isotope signatures and water column nutrients were not useful in distinguishing developed and undeveloped sites, increasing the potential usefulness of periphyton monitoring during early stages of lake development. 6. A laboratory investigation suggested that common macroinvertebrate grazers assimilated a much greater proportion of diatoms than the filamentous green algae that are associated with fertilization at developed sites. 7. These findings have at least two clear implications: (i) periphyton may be used to detect human impacts before disturbance is evident in offshore monitoring programmes and (ii) nearshore impacts in response to modest residential development have the potential to disrupt lake food web dynamics.  相似文献   

2.
Seasonal Dynamics of Periphyton in a Large Tropical Lake   总被引:1,自引:0,他引:1  
Tropical aquatic systems are generally assumed to have little seasonality in productivity patterns. However, this study indicated that there was substantial seasonal variation in epilithic productivity and biomass in tropical Lake Tanganyika, due primarily to seasonal patterns in lake hydrodynamics that influence nutrient availability. Although they support much of the lake’s biological diversity, epilithic algae made a minor contribution to the total energy budget in Lake Tanganyika. A comparison among large, oligotrophic lakes revealed no significant latitudinal trends in periphyton productivity or biomass. However, Lake Tanganyika has relatively low benthic algal biomass and is therefore more efficient at photosynthesis than the temperate lakes. The influence of wave action and consumer density and diversity may be important in moderating productivity of the epilithic community.  相似文献   

3.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

4.
Picophytoplankton biomass and its contribution to total phytoplankton biomass were investigated in relation to the nutrient concentration and total N: total P ratio of the epilimnetic waters of 42 Japanese lakes during the warm season in 1991 (April–October). Picophytoplankton biomass (as chlorophyll a) in meso-, eu-, and hypertrophic lakes was significantly higher than those observed in oligotrophic lakes. However, picophytoplankton biomass increased significantly with increased total P concentrations in all systems excluding hypertrophic lakes. Picophytoplankton contribution to total chlorophyll a content was significantly higher in oligo- and mesotrophic lakes than in eu- and hypertrophic lakes and was inversely correlated with total P concentrations in lake water. Picophytoplankton contribution to the total phytoplankton biomass was positively (r = 0.54, n = 42, P = 0.0003) correlated with the total N: total P ratio of lake waters. Each lake trophic type, with the exception of hypertrophic lakes, showed this trend, although the correlation was not significant. We suggest that picophytoplankton contribution is influenced by the total N: total P ratio rather than lake trophic state; however, picophytoplankton were of little importance in hypertrophic lakes.  相似文献   

5.
Phytoplankton structure in different lake types in central Finland   总被引:2,自引:0,他引:2  
Pertti Eloranta 《Ecography》1986,9(3):214-224
Phyloplankton structure and its relation to physical and chemical properties of the water was studied in 58 central Finnish lakes. The biomass ranged from 0.2 to 14.2 g m−3 and the number of taxa per sample ranged from 33 to 152. The lakes were grouped into 5 types according to their trophic state: eutrophic, dyseutrophic, mesotrophic, oligotrophic, and acid oligotrophic lakes. The average biomass in eutrophic lakes was 5.57 g m−3, in dyseutrophic 3.54 g m−3, 1.23 g m−3 in mesotrophic, 0.52 g m−3 in oligotrophic and 0.39 g −3 in acid oligotrophic lakes. The average number of taxa per sample in the corresponding lake types were 109. 1, 79.3, 97.9, 90.9 and 43.8, respectively. The phytoplankton communities in eutrophic lakes were characterized by blue-green algae (21.2% of total biomass) and green algae (18.7% of total biomass). In dyseutrophic lakes the proportion of green algae was much smaller (7.2% of total biomass) than in eutrophic lakes, whereas the proportion of diatoms and cryptophytes was higher (28.2 and 20.4% of total biomass, respectively). Chrysophytes dominated in the oligotrophic and mesotrophic lakes (27.3–39.9% of total biomass). The contribution of dinoflagellates to the total biomass was highest in the most oligotrophic acidified lakes and in those lakes the relative proportions of blue-green and green algae were much higher than in the typical oligotrophic lakes. The lakes were also grouped into 8 community types according to the dominating algal group. Cyanophyceae- and Chlorophyceae-types characterized the eutrophic lakes, whereas Chrysophyceae-Dinopheceae-type was typical for most oligotrophic lakes. The other 5 types occurred in mesotrophic and oligotrophic lakes but the physical and chemical properties of these lakes did not differ much.  相似文献   

6.
7.
The potential of periphyton for phosphorus removal from lakes has been investigated using a novel method involving polypropylene (PP) substrate carriers submerged in the pelagial. The study area Lake 'Fühlinger See' in Cologne (Germany) is a complex of mesoeutrophic gravel pit lakes. The whole site is intensively used as a recreation area. Visitors are thought to be the most important single contributors to lake eutrophication. Carriers were exposed at different depths (2, 3.5, 5 m), for different time intervals (1–8 months) and from March to November PP-sheets were readily colonised by periphyton and a biofilm consisting mainly of benthic diatoms developed. Seasonal variability of periphyton on substrates was observed since filamentous green algae colonised the artificial substrates mainly between July and November. Chlorophyll a content of periphyton on the PP-fleece was up to 240-fold higher than chlorophyll a concentrations in the same volume in the epilimnion. Up to around 100 mg of total phosphorus per m2 PP-fleece was bound and can be eliminated from the lake by removal of the substrate carriers together with the periphyton after four months of exposure. Though large-scale validations are needed, this method may be applicable as a technique to harvest phosphorus from the water column in larger-scale settings.  相似文献   

8.
Algal biomass, C:N:P (carbon:nitrogen:phosphorus) ratios and APA (biomass specific alkaline phosphatase activity) were measured in benthic algal communities on living substrates (mussels and macrophytes) and on rocks and stones (epilithon) in three lakes of different trophy. Benthic algal communities on living substrates had lower C:N:P ratios than epilithon, whereas algal biomass was highest on rocks and stones. Benthic algal biomass increased with the trophic level of a lake despite an increase of C:N:P ratios in the benthic community. The differences in C:N:P ratios and algal biomass between lakes of different trophy were higher on inert substrates than on macrophytes and mussels, probably because algae on living substrates could compensate a poor nutrient supply from lake water with substrate nutrients. However, the substrate was not, as expected, the most important nutrient supply in the oligotrophic lake, but in the eutrophic lake. Therefore, differences between inert and living substrates in a single lake were highest in the eutrophic lake. APA values of the oligotrophic lake were very high especially for benthic algae on stones, indicating an ability of the community to take up nutrients from organic sources. In conclusion, living substrates were an important nutrient source for benthic algae and the importance of this nutrient supply did not decrease with increasing lake trophy.  相似文献   

9.
The nutrient characteristics of aquatic environments at Hope Bay (Antarctica) depend on different factors, penguin enrichment being one of the most important. In this study we surveyed three water bodies of different morphometry and trophic status: Esperanza Lake (oligotrophic), Boeckella Lake (meso-eutrophic), and Pingüi Pond (hypereutrophic). This research provides a preliminary characterization of the periphyton colonization on artificial substrata (glass slides) of these water bodies from the end of January to mid-March 2000. Qualitative and quantitative analyses of the algae, chlorophyll a, dry weight, ash-free dry weight, and physical and chemical variables of the lakes were assessed. The Autotrophic Index and the Lakatos system of classification were also applied. All three lakes differed clearly in all the variables considered. The periphyton from Esperanza Lake was first dominated by Bacillariophyceae and subsequently by the chrysophyce Phaeogloea mucosa. P. mucosa was the dominant species at Boeckella Lake and Chlamydomonas subcaudata was dominant at Pingüi Pond. Highest mean maximum density values were reached at Pingüi Pond, followed by Boeckella and Esperanza Lakes. Highest biomass figures were registered with increasing trophic status. According to the Lakatos index, the periphyton of Esperanza Lake was the least developed and it was mainly organic and heterotrophic; Boeckella Lake showed intermediate development in periphyton mass, which was autotrophic and mainly inorganic whereas Pingüi Pond showed the highest development in periphytic mass, and it was mainly autotrophic.  相似文献   

10.
为全面了解着生藻类在建群中群落变化的生态学特性,揭示着生藻类的建群规律,在以丝状藻类为优势藻的生态塘中,采用花岗岩和瓷砖为附着材料,设置水体底部和中部为附着位点,进行频次为10d的采样分析。结果表明,生态塘中共检出8门73属117种着生藻类,其中以硅藻、蓝藻、绿藻为优势类群。同时不同人工基质和不同空间层次条件下着生藻类的建群特征较一致,早期以单细胞硅藻如舟形藻(Navicula sp.)、脆杆藻(Fragilaria sp.)、曲壳藻(Achnanthes sp.)等为优势,后期以丝状藻类如鞘丝藻(Lyngbya sp.)、颤藻(Oscillatoria sp.)、伪鱼腥藻(Pseudanabaena sp.)等为优势;研究结果发现不同人工基质(花岗岩和瓷砖)对着生藻类的种类组成、细胞密度、生物量和藻类多样性无显著影响,花岗岩和瓷砖上附着的着生藻类具有较高的相似性;但不同的空间层次对着生藻类建群特征影响明显,水体底部具有更多的硅藻种类数,中部具有更多的绿藻,随着建群时间的发展,蓝藻比例不断增加;就生物量而言,底部的着生藻类叶绿素a显著高于水体中部,但两者的细胞密度无显著性差异;随着建群过程的发展,水体底部的着生藻类生物量达峰值所需的时间比中部更长。通过相关性分析,生态塘中着生藻类的生长主要受总磷的影响。  相似文献   

11.
Phytoplankton assemblages were studied during autumn 1998 in oligo-, meso- and eutrophic lakes in central Sweden (62°54'N). Differences in phytoplankton assemblages have been detected both in space and time. In eutrophic lakes coccoid Chlorophyceae dominated quantitatively during September and October. Diatoms were the most diverse group in all types of lakes in September and in meso- and oligotrophic lakes in October. In November Cryptophyceae became the most abundant group in all lakes. The total richness of species decreased in the meso- and oligotrophic environments in November compared to September and October, whilst in the eutrophic environment it remained almost unchanged. Cluster analyses, using both presence-absence and presence-absence in combination with abundance matrices, showed similar results and a good resolution between the lakes of different eutrophication conditions. We conclude that the phytoplankton assemblages of the lakes studied depended on the trophic conditions and thus they can be used for resolution between different eutrophication levels.  相似文献   

12.
Depending on the chemical and physical environment, algae and heterotrophic bacteria in stream periphyton communities likely engage in both positive and negative interactions. We tested the hypothesis that bacteria are more closely associated with algae when allochthonous sources of labile DOC are low and algae are not light limited. Secondly, we tested the hypothesis that, under extremely oligotrophic conditions, bacteria will out-compete algae for inorganic nutrients if their carbon requirements are met by allochthonous sources. Experiments were carried out using in situ light manipulations and nutrient diffusing substrates (releasing inorganic nutrients and /or glucose) in Harts Run, an oligotrophic stream located in north central Kentucky. Although we found that both algal and bacterial biomass were higher under ambient light, bacteria did not respond to glucose in the dark. This may indicate that bacteria were associated with algae not as a carbon source, but as a substrate for colonization. In the nutrient × glucose manipulation, we found that bacteria were co-limited by inorganic nutrients. There was no evidence of algae being negatively affected by competition with bacteria for nitrogen and phosphorus. Although low temperatures might have played a role in preventing inorganic nutrient competition between these two groups of organisms, the results of both experiments may indicate that the quantitative link between periphytic bacteria and algae is stronger under oligotrophic conditions.  相似文献   

13.
Spring and summer vertical distributions of attached algae were studied on artificial substrates (glass cover slips) in shallow fishponds of different trophic status. Differences were found in colonization process between two fishponds, two seasons and between two sites at each fishpond (central part, fishpond shore). Oligotrophic fishpond U třech krátkych can be characterized by better light conditions and lower temperatures. While equal vertical distribution of periphytic algae was observed at oligotrophic site, their relative cover decreased continuously in spring and strongly in summer with the increasing depth at eutrophic site. Oligotrophic fishpond can be characterized by very slow colonization rate and increasing abundance of Chrysophyceae. On the other hand Cyanobacteria were more frequent in eutrophic fishpond where periphyton displayed high colonization rate. Diatom species richness was the highest at oligotrophic site during spring experiments. The sites near the fishpond shore compared to sites in the central part of the fishpond can be characterized by higher rate of colonization, higher periphyton relative cover, lower proportion of Chrysophyceae and higher proportions of diatoms and cyanophytes indicating probably higher trophic level.  相似文献   

14.
In lakes, benthic micro-algae and cyanobacteria (periphyton) can contribute significantly to total primary productivity and provide important food sources for benthic invertebrates. Despite recognition of their importance, few studies have explored the diversity of the algal and cyanobacterial composition of periphyton mats in temperate lakes. In this study, we sampled periphyton from three New Zealand lakes: Tikitapu (oligotrophic), ōkāreka (mesotrophic) and Rotoiti (eutrophic). Statistical analysis of morphological data showed a clear delineation in community structure among lakes and highlighted the importance of cyanobacteria. Automated rRNA intergenic spacer analysis (ARISA) and 16S rRNA gene clone libraries were used to investigate cyanobacterial diversity. Despite the close geographic proximity of the lakes, cyanobacterial species differed markedly. The 16S rRNA gene sequence analysis identified eight cyanobacterial OTUs. A comparison with other known cyanobacterial sequences in GenBank showed relatively low similarities (91-97%). Cyanotoxin analysis identified nodularin in all mats from Lake Tikitapu. ndaF gene sequences from these samples had very low (≤ 89%) homology to sequences in other known nodularin producers. To our knowledge, this is the first detection of nodularin in a freshwater environment in the absence of Nodularia. Six cyanobacteria species were isolated from Lake Tikitapu mats. None were found to produce nodularin. Five of the species shared low (< 97%) 16S rRNA gene sequence similarities with other cultured cyanobacteria.  相似文献   

15.
As part of a habitat restoration experiment wood substrates (red gum) were introduced to two lowland streams of SE Australia in which habitat has been severely degraded by deposition of sand eroded from higher in the catchment. We monitored net primary production (NPP) and community respiration (CR), nutrient concentrations and the succession of algae and invertebrates (abundance and species richness), sampling at 2, 4, 8, 12, 16 and 20 weeks. Colonisation by algae was rapid, and there were distinct changes in the assemblages over the first 4 weeks. Thereafter, changes were much less marked. There were also differences in nutrient concentrations and some measures of algal abundance between the two creeks. As with the algae, invertebrates colonised these substrates extremely rapidly, peaking in abundance and richness in week 8. Invertebrate abundances closely tracked changes in the abundance of algae. By the end of the study both algal and invertebrate communities were in apparent decline, with sharp decreases in invertebrate and algal abundance and invertebrate species richness. Rates of GPP also declined toward the end of the experiment, and this coincided with the detachment of large mats of filamentous algae and the recession of flows over the summer months. However, in both streams the added timber quickly created habitat with high levels of primary production in an otherwise strongly heterotrophic stream system. These hotspots of autotrophic production were quickly colonised by high numbers of macroinvertebrates indicating timber addition may provide an effective means of augmenting habitat for algae and invertebrates in sanded streams.  相似文献   

16.

Macrophytes and phytoplankton are recognized as having roles in determining alternative stable states in shallow lakes and reservoirs, while the role of periphyton has been poorly investigated. Temporal and spatial variation of phytoplankton, epipelon and epiphyton was examined in a shallow reservoir with high abundance of aquatic macrophytes. The relationships between algae communities and abiotic factors, macrophyte coverage and zooplankton density were also analyzed. Monthly sampling was performed in three zones of the depth gradient of the reservoir. Two phases of algal dominance were found: a phytoplankton phase and epipelon phase. The phase of phytoplankton dominance was characterized by high macrophyte coverage. Rotifera was the dominant zooplankton group in all the zones. Flagellate algae were dominant in phytoplankton, epipelon and epiphyton. Macrophyte coverage was found to be a predictor for algal biomass. Changes in biomass and species composition were associated with macrophyte cover variation, mainly the Nymphaea. In addition to the abiotic factors, the macrophyte coverage was a determining factor for changes to the algal community, contributing to the alternation between dominance phases of phytoplankton and epipelon. The macrophyte–phytoplankton–periphyton relationship needs to be further known in shallow reservoirs, especially the role of epipelon as an alternate stable state.

  相似文献   

17.
P. J. Roos 《Aquatic Ecology》1979,13(2-3):117-117
Summary This study forms part of investigations on the importance of periphyton in the lake ecosystem. The substratum consists of submerged parts ofPhragmites australis in their growing season as well as older ones. Significant differences in occurrence of several species of algae were found between lakeside and bankside of the stems, peripheral stems and central stems in the reed stand, stems of the current year and stems of the previous year, as well as between upper, middle and lower parts of the submerged stems.There are differences inAchnanthes/Gomphonema ratio at various localities. This is most evident in early winter, being obscured in spring and summer by an overall rise in number ofAchnanthes.In the month of May the young sprouts are rapidly colonised by green algae and diatoms. The green algae offer an additional substratum, and therefore enlarge the available substratum for diatom growth. It appears that the green algae are better colonisers than the diatoms. During the summer the green algaeOedogonium andBulbochaete become covered by a layer of lime, which becomes densely packed with diatoms. A significant rise in the number of diatoms is also due to the additional substratum offered by stalks and tubes ofCymbella species. In December the lime disappears as do nearly all green algae.Cymbella lanceolata andC. prostrata then begin an explosive bloom, which continues to the end of the winter. The total number of diatoms can rise to nearly 2,000,000/cm2, the half of which is situated on stalks and tubes ofCymbella. When in April mostCymbella disappears, the total number of diatoms decreases also abruptly. The stem, now nearly one year old, is then barely grown over with periphyton. Soon the development of the periphyton on this stem corresponds to the settlement of epiphytes on the new sprouts.The presence of the periphyton itself offers a considerable temporal additional substratum. Great numbers of diatoms may occur onCymbella stalks. Multitudes of diatoms may be present onBulbochaete andOedogonium. The winter situation reveals a storied growth, depending on the stalk length of the various diatoms. There also is a zonation in diatom growth on large stalks,Achnanthes growing near the reed surface, andSynedra preferring the free space. In between the sessile algae the chains and guirlandes of the araphid genera are woven.In this way the periphyton forms a firm unity, not only functional, but structural as well. *** DIRECT SUPPORT *** A0692010 00005  相似文献   

18.
The ecology of epipelic algae on the marginal sediments of five Welsh lakes was studied over an annual cycle. The lakes, Llydaw, Cwellyn, Padarn, Maelog and Coron ranged from very oligotrophic to nutrient-rich. Attention was focussed on chlamydomonad flagellates, diatoms, blue-green algae and euglenoids and the different proportions of these in algae in the epipelon of lakes of contrasting water quality. A total of 75 algal taxa was found in the five lakes, 25 were species of volvocalean flagellates. Mean annual population density of these flagellates differed by an order of magnitude between the lakes. The greatest population density was recorded for Chlamydomonas anticontata Schiller in nutrient-rich Llyn Maelog. Twenty species of pennate diatoms were recorded frequently in the epipelon. In the nutrient-rich lakes, Maelog and Coron, pennate diatoms were dominant on the sediments, where they exhibited population maxima in spring and autumn. Increase in numbers of epipelic diatoms was recorded when silica concentrations were minimum in the overlying lake waters. Navicula hungarica Grun. achieved the maximum population density, 260 000 cells · cm?2. Euglenoids formed large epipelic populations during late-summer and autumn in these nutrient-rich lakes. Blue-green algae were more important, proportionally, in the nutrient-poor mountain lakes, which had sediments of higher organic content. Chlamydomonads were the major algal component of the epipelon in the mountain lakes, Llydaw and Cwellyn, where the sediments were characterized by larger particle size, and higher organic content. In the nutrient-rich lakes, where the sediments had higher calcium content, chlamydomonads formed significant populations only during spring and summer, when nutrient levels were minimal in the overlying lakewaters.  相似文献   

19.
The objective of this study was to investigate nutrient limitation of algal abundance in Anderson-Cue Lake, a softwater clear oligotrophic lake in north-central Florida. Nutrient diffusing clay pots and cylindrical enclosures were used in the field to test effects of different combinations of nitrogen, phosphorus, silica, and carbon on algal standing crop and composition of periphytic and planktonic algae, respectively. Effects of nutrient enrichment on periphytic algae were examined in two studies conducted 31 May – 8 July and 10 June – 15 July 1991. Nutrient effects on planktonic algae were examined in one study from 13 June – 1 July 1991. Planktonic and periphytic algal biovolume was significantly higher (p<0.05) when nitrogen and carbon were added in combination than with treatments without nitrogen, carbon, or nitrogen and carbon. Treatments with nitrogen and carbon combined resulted in lower algal diversity and dominance by coccoid green algae andScenedesmus. Results indicate that carbon and nitrogen can be limiting factors to algal growth in Anderson-Cue Lake and possibly other lakes of similar water quality.  相似文献   

20.
  • 1 The resistance and resilience of littoral zone communities to sedimentation will depend both on the extent to which sediment deposition affects productivity, and on interactions within the communities. A series of hypotheses were set up and tested to examine interactions and feedback mechanisms among deposited sediments, periphyton, macrophytes and grazers in a large oligotrophic lake subject to fluctuating sediment loadings.
  • 2 Although sediments incorporated into periphyton reduced light availability to macrophytes, periphytic algae were generally the dominant light absorbing component under natural conditions. When grazers were absent, both sediments incorporated in the periphyton and periphytic algal densities increased, and both were then important in reducing light available to macrophytes.
  • 3 Grazing rate and assimilation efficiency for the dominant grazer, the prosobranch gastropod Potamopyrgus antipodarum, increased with increasing sediment content under natural lake conditions to reach a maximum at 10 mg sediment cm?2.
  • 4 An increase in sediment incorporation into periphyton films resulted in an increased grazing rate and hence grooming of sediments from macrophytes.
  • 5 Grazing invertebrates can play a major role in maintenance of littoral communities by continuously grooming macrophyte hosts of periphytic algae and settled sediments.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号