首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two types of elicitors are compared: proteins leading to necrosis including four elicitins and harpin, and non-necrotic elicitors including flagellin (flg22) and two oligosaccharidic elicitors, namely the oligogalacturonides (OGs) and the beta-1,3-glucan laminarin. Our data indicate that the proteinaceous elicitors induced a pronounced and sustainable [Ca2+](nuc) elevation, relative to the small effects of oligosaccharidic elicitors. This [Ca2+](nuc) elevation, which seems insufficient to induce cell death, is unlikely to result directly from the diffusion of calcium from the cytosol. The [Ca2+](nuc) rise depends on free cytosolic calcium, IP3, and active oxygen species (AOS) but is independent of nitric oxide.  相似文献   

2.
3.
4.
Calcium signatures induced by two elicitors of plant defense reactions, namely cryptogein and oligogalacturonides, were monitored at the subcellular level, using apoaequorin-transformed Nicotiana tabacum var Xanthi cells, in which the apoaequorin calcium sensor was targeted either to cytosol, mitochondria or chloroplasts. Our study showed that both elicitors induced specific Ca(2+) signatures in each compartment, with the most striking difference relying on duration. Common properties also emerged from the analysis of Ca(2+) signatures: both elicitors induced a biphasic cytosolic [Ca(2+)] elevation together with a single mitochondrial [Ca(2+)] elevation concomitant with the first cytosolic [Ca(2+)] peak. In addition, both elicitors induced a chloroplastic [Ca(2+)] elevation peaking later in comparison to cytosolic [Ca(2+)] elevation. In cryptogein-treated cells, pharmacological studies indicated that IP(3) should play an important role in Ca(2+) signaling contrarily to cADPR or nitric oxide, which have limited or no effect on [Ca(2+)] variations. Our data also showed that, depending on [Ca(2+)] fluxes at the plasma membrane, cryptogein triggered a mitochondrial respiration increase and affected excess energy dissipation mechanisms in chloroplasts. Altogether the results indicate that cryptogein profoundly impacted cell functions at many levels, including organelles.  相似文献   

5.
The rate of 14C-leucine and 3H-uracil incorporation by tobacco cells (Nicotiana tabaccum var. Samsun N.N.) in suspension culture was simultaneously decreased by the addition of kinetin at concentrations above 2.5 × 10−5m. Ribosomal RNA was the first RNA species affected by kinetin. The purine derivatives, adenine and N6-methyl-aminopurine, which exhibit low cytokinin activity overcame the inhibitory effects of kinetin. However, purine derivatives without cytokinin activity, guanine, N6,6-dimethyl-aminopurine, and 2-aminopurine, did not relieve kinetin inhibition.  相似文献   

6.
7.
Yano K  Hattori M  Moriyasu Y 《Autophagy》2007,3(3):215-221
Mature plant cells have large vacuoles. But how these vacuoles are formed has not been fully understood. It has been reported that autophagy is involved in the genesis of plant vacuoles. Thus we examined whether autophagy occurs in the vacuole genesis of a plant cell model called miniprotoplasts, in which preexisting large vacuoles have been removed. We prepared miniprotoplasts from tobacco culture cells (BY-2) and observed the formation of vacuoles by light and electron microscopy. The miniprotoplasts had few vacuoles immediately after preparation, but had large vacuoles after 1 to 2 d. When the cysteine protease inhibitor E-64c or E-64d was added to culture media, almost all vacuoles formed contained materials of cytoplasmic origin. This result suggests that autophagy occurs together with the genesis of the vacuoles in miniprotoplasts. 3-Methyladenine and phosphatidylinositol 3-kinase inhibitors such as wortmannin and LY294002, all of which block starvation?induced autophagy in tobacco culture cells and constitutive autophagy in Arabidopsis root cells, did not affect the autophagy in miniprotoplasts. Thus the form of autophagy in miniprotoplasts is probably different from the form of autophagy that arises as a result of sucrose starvation and constitutive autophagy in root tip cells. The causal connection between autophagy and vacuole genesis in miniprotoplasts was not clarified in this study.  相似文献   

8.
Ubiquinone (UQ) formation in BY-2 tobacco cells was especially promoted by a high concentration of 2,4-D. 2,4,5-T, MCP and NAA also promoted UQ formation in these cells. The UQ content in the cells cultured at high concentrations of 2,4-D was higher than that of controls throughout the culture period. The addition of 2,4-D at an early period in cell growth was very effective in promoting UQ formation, but addition at the stationary phase was ineffective. Cell growth was improved by adding phosphate to the medium but UQ content was decreased. UQ content decreased slowly during subculturing, whereas cell growth recovered gradually.  相似文献   

9.
The effect of oxygen supply on the cultivation of the genetically modified tobacco cells and the formation of a foreign protein, beta-glucuronidase (GUS), was investigated in 250-mL Erlenmeyer flasks, a 5-L stirred tank fermenter, and a 7-L air-lift fermenter. The oxygen supply was varied by using different volumes of medium in the case of the 250-mL Erlenmeyer flask culture or by the different aeration rate in the case of the two types of fermenters tested. Higher oxygen supply stimulated cell growth and increased oxygen consumption rate, the level of phenolics, and GUS productions.  相似文献   

10.
Kex2p is the prototype of a Golgi-resident protease responsible for the processing of prohormones in yeast and mammalian cells. A Kex2p-like pathway was shown to be responsible for processing the fungal KP6 protoxin in transgenic tobacco plants. We previously described a chimeric integral membrane reporter protein that traffics through Golgi to the lytic prevacuole where it was proteolytically processed. As a first step to isolate and clone the Kex2p-like protease in plant cells, we designed and used a similar chimeric reporter protein containing Kex2 cleavage sites to assay the Kex2p-like activity and to determine its substrate specificity in tobacco cells. Here we demonstrate that the Kex2 cleavage sites of the reporter were specifically processed by a protease activity with a substrate specificity characteristic of yeast Kex2p. This Kex2p-like protease in tobacco cells is also a Golgi-resident enzyme. Thus, the reporter protein provides a biochemical marker for studying protein traffic through the Golgi in plant cells. These results additionally should allow the design of synthetic substrates for use in biochemical purification of the plant enzyme.  相似文献   

11.
The biochemical properties of the enzymes involved in phosphatidylinositol (PI) turnover in higher plants were investigated using the plasma membrane isolated from tobacco suspension culture cells by aqueous two-phase partitioning. Submicromolar concentrations of Ca2+ inhibited PI kinase and phosphatidylinositol 4-phosphate (PIP) kinase and stimulated phospholipase C. Diacylglycerol (DG) kinase was inhibited by Ca2+, but required a higher concentration than the physiological level. From the above results we postulate the following scheme: signal coupled activation of phospholipase C produces IP3 which induces Ca2+ release from the intracellular Ca2+ compartment, the increased cytoplasmic Ca2+ in turn activates phospholipase C and causes a further increase of the cytoplasmic Ca2+ level. This inhibits PI kinase and PIP kinase and brings about a limited supply of PIP2, the substrate of phospholipase C. Consequently, IP3 production decreases and Ca2+ mobilization ceases. Then cytosolic Ca2+ returns to the stationary level by the Ca2+ pump at the plasma membrane and at the endoplasmic reticulum and Ca2+/H+ antiporter at the plasma membrane and at the tonoplast.  相似文献   

12.
Calcium is an important regulator of a variety of neuronal activities including gene expression. However, it is not clear how Ca2+ influx affects intracellular Ca2+ concentration [( Ca2+]i) in the nucleus. We have taken advantage of laser photometry, the Ca2(+)-sensitive dye Indo-1 that allows ratio imaging, and confocal microscopy to eliminate the influences of unequal cell geometry and dye distribution. We show that Ca2+ influx into sympathetic neurons causes a significantly greater and faster increase in [Ca2+]i in the nucleus than in the cytosol. The differential increase in nuclear [Ca2+]i was apparent when Ca2+ entered from the extracellular medium during K+ depolarization, ionomycin or acetylcholine treatment, and brief periods of electrical stimulation. When intracellular Ca2+ was mobilized by caffeine the rise in nuclear [Ca2+]i was again greater than in any other region of the neuron. The increased nuclear Ca2+ levels were uniform throughout the nucleus and not associated with the nuclear envelope. The differential rise in nuclear Ca2+ was eliminated by acridine orange binding to nucleic acids. Nonexcitable cells (astrocytes, oligodendrocytes, and fibroblasts) did not show differential distribution of Ca2+ after ionomycin treatment. These results support the idea that activity-dependent gene regulation in sympathetic neurons may be mediated by changes in Ca2+ concentration at the level of the chromatin material.  相似文献   

13.
14.
Summary Changes in the amount of nucleic acid and nitrogen, and the relationships between these amounts and the growth rate of tobacco cells (Nicotiana tabacum L. cv. Bright Yellow-2) at different initial nitrogen concentrations in the medium, were examined in batch cultures. During culture in basal medium, the amount of intracellular nucleic acid expressed per unit of dry biomass was 36.3 mg RNA g–1 cell and 8.1 mg DNA g–1 cell at the beginning of batch culture. These values increased 2.5 fold for RNA and 1.5 fold for DNA during the exponential growth phase and then gradually decreased with the decline in the growth rate. Similar changes were also observed in the medium containing less nitrogen. The specific growth rate, (day–1), of the culture corresponded to the magnitude of the intracellular RNA content (mg RNA g–1 cell), and the linear relationship, RNA=38+23 was obtained. In addition, there were remarkable positive correlations between the total and protein nitrogen, and during the cultures. The mononucleotide composition of total RNA (AMP+UMP)/(GMP+CMP) which was suggested to be a convenient index of metabolic activity was nearly constant (0.78 to 0.80) during tobacco cell culture in the basal medium.  相似文献   

15.
An S-adenosyl-l-methionine: o-dihydric phenol O-methyltransferase was isolated from tobacco cell suspension culture and was partially purified by (NH4)2SO4 precipitation and successive chromatography on DEAE-Sepharose, Sephacryl S-200 and hydroxyapatite columns. It catalysed the O-methylation of 3 cinnamic acids, two coumarins and two flavonoids, but to different extents. Results obtained from polyacrylamide gel electrophoresis, m-/p-methylation ratios and mixed substrate experiments indicated the existence of two forms of the enzyme which were resolved by chromatography on DEAE-cellulose. One form (MW 74000, pI 6.1, opt. pH 7.3) catalysed the meta-methylation of caffeic acid, while the other (MW 70000, pI 6.3, opt. pH 8.3) mediated the para-methylation of quercetin, though each form exhibited some activity against other substrates.  相似文献   

16.
Two novel approaches for the study of Ca2+-mediated signal transduction in stomatal guard cells are described. Stimulus-induced changes in guard-cell cytosolic Ca2+ ([Ca2+]cyt) were monitored using viable stomata in epidermal strips of a transgenic line of Nicotiana plumbaginifolia expressing aequorin (the proteinous luminescent reporter of Ca2+) and in a new transgenic line in which aequorin expression was targeted specifically to the guard cells. The results indicated that abscisic acid (ABA)-induced stomatal closure was accompanied by increases in [Ca2+]cyt in epidermal strips. In addition to ABA, mechanical and low-temperature signals directly affected stomatal behaviour, promoting rapid closure. Elevations of guard-cell [Ca2+]cyt play a key role in the transduction of all three stimuli. However, there were striking differences in the magnitude and kinetics of the three responses. Studies using Ca2+ channel blockers and the Ca2+ chelator EGTA further suggested that mechanical and ABA signals primarily mobilize Ca2+ from intracellular store(s), whereas the influx of extracellular Ca2+ is a key component in the transduction of low-temperature signals. These results illustrate an aspect of Ca2+ signalling whereby the specificity of the response is encoded by different spatial or kinetic Ca2+ elevations.  相似文献   

17.
TRITC-labelled phalloidin was used to visualize F-actin distribution during mitosis in Nicotiana tabacum BY-2 suspension cells. Aphidicolin was used to synchronize cell suspensions, which enabled sufficient numbers of mitotic cells to be obtained. F-actin was present in the spindle, and its orientation seemed to correlate with the known microtubular arrays. The use of confocal microscopy greatly reduced background fluorescence, and therefore fine actin filaments could be observed in spindles previously thought to be devoid of actin.  相似文献   

18.
Although leaf chloroplast transformation technology was developed more than a decade ago, no reports exist of stable transformation of undeveloped plastids or other specialized plastid types, such as proplastids, etioplasts, or amyloplasts. In this work we report development of a dark-grown tobacco suspension cell model system to investigate the transformation potential of undeveloped plastids. Electron microscope analysis confirmed that the suspension cells carry plastids that are significantly smaller (approximately 50-fold less in volume) and have a very different subcellular localization and developmental state than leaf cell chloroplasts. Using antibiotic selection in the light, we demonstrated that both plastid and nuclear transformation of these cell suspensions is efficient and reproducible, with plastid transformation frequency at least equal to that of leaf chloroplast transformation. Homoplasmic plastid transformants are readily obtained in cell colonies, or in regenerated plants, providing a more consistent and versatile model than the leaf transformation system. Because of the uniformity of the cell suspension model, we could further show that growth rate, selection scheme, particle size, and DNA amount influence the frequency of transformation. Our results indicate that the rate-limiting steps for nuclear and plastid transformation are different, and each must be optimized separately. The suspension cell system will be useful as a model for understanding transformation in those plant species that utilize dark-grown embryogenic cultures and for characterizing the steps that lead to homoplasmic plastid transformation.  相似文献   

19.
20.

Key message

Dammarenediol-II is biologically active tetracyclic triterpenoid, which is basic compound of ginsenoside saponin. Here, we established the dammarenediol-II production via a cell suspension culture of transgenic tobacco overexpressing PgDDS.

Abstract

Dammarenediol-II synthase catalyzes the cyclization of 2,3-oxidosqualene to dammarenediol-II, which is the basic triterpene skeleton in dammarene-type saponin (ginsenosides) in Panax ginseng. Dammarenediol-II is a useful candidate both for pharmacologically active triterpenes and as a defense compound in plants. Dammarenediol-II is present in the roots of P. ginseng in trace amounts because it is an intermediate product in triterpene biosynthesis. In this work, we established the production of dammarenediol-II via cell suspension culture of transgenic tobacco. The dammarenediol-II synthase gene (PgDDS) isolated from P. ginseng was introduced into the Nicotiana tobacum genome under the control of 35S promoter by Agrobacterium-mediated transformation. Accumulation of dammarenediol-II in transgenic tobacco plants occurred in an organ-specific manner (roots > stems > leaves > flower buds), and transgenic line 14 (T14) exhibited a high amount (157.8 μg g?1 DW) of dammarenediol-II in the roots. Dammarenediol-II production in transgenic tobacco plants resulted in reduced phytosterol (β-sitosterol, campesterol, and stigmasterol) contents. A cell suspension culture was established as a shake flask culture of a callus derived from root segments of transgenic (T14) plants. The amount of dammarenediol-II production in the cell suspension reached 573 μg g?1 dry weight after 3 weeks of culture, which is equivalent to a culture volume of 5.2 mg dammarenediol-II per liter. Conclusively, the production of dammarenediol-II in a cell suspension culture of transgenic tobacco can be applied to the large-scale production of this compound and utilized as a source of pharmacologically active medicinal materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号