首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper the mechanism of the adenosine formation by a mixture of nerve ending and transmitter granula fractions was invesitgated. The adenosine formation in vivo is only possible via the whole degradation chain ATP - ADP - AMP - adenosine. The enzymes involved are ATPases, adenylate kinase and 5'-nucleotidase. The ATPase and adenylate kinase effectors Ca++ and Mg++ can be regarded as trigger ions switching on and off the degradation chain. The adenylate kinase represents a key enzyme within the whole chain. In the ion-activated state a non-inhibited adenosine formation was observed, when the initial ATP concentration amounted to less than 0,1 muMol per mg synaptosomal membrane protein. Under these conditions the whole chain velocity is mainly dependent on the 5'-nucleotidase concentration, because ATPases and adenylate kinase remove the nucleotidase inhibitors ATP and ADP spontanously. The conditions for the optimal velocity of the adenosine formation at the synaptic membrane in vivo in all probability are present. A hypothesis for the mechanism of the synaptic adenosine formation in vivo was developed. The importance of this process in respect to the synaptic transmission was discussed.  相似文献   

2.
Some properties of adenosine kinase from Ehrlich ascites-tumour cells   总被引:5,自引:4,他引:1  
1. Adenosine kinase was measured in dialysed extracts from Ehrlich ascites-tumour cells by a chromatographic procedure. 2. In the absence of added Mg(2+) the K(m) values for ATP and adenosine were 0.22mm and 2.8mum respectively. 3. The maximum velocity of adenosine kinase with free ATP was about three times that with the Mg(2+)-ATP complex. Free Mg(2+) was a non-competitive inhibitor of the reaction. A small amount of added Mg(2+), Mn(2+) or Ca(2+) was required for maximum adenosine kinase activity after cation bound to the enzyme had been released by treatment with p-chloromercuribenzoate and then removed by dialysis. 4. GTP, ITP, deoxy-ATP, deoxy-GTP, CTP, xanthosine triphosphate, UTP and thymidine triphosphate could partially or completely replace ATP as a phosphate donor. 5. The reaction of ATP with adenosine kinase was competitively inhibited by AMP, GMP, IMP, ADP, deoxy-ADP and IDP (K(i) 0.2, 1.1, 5.9, 1.2, 0.5 and 0.78mm respectively). Enzymic activity was markedly affected by the relative concentrations of AMP, ADP and ATP in assay mixtures. 6. The results are discussed in terms of possible mechanisms regulating the rate of adenosine kinase in vivo.  相似文献   

3.
Human placental adenosine kinase. Kinetic mechanism and inhibition   总被引:4,自引:0,他引:4  
The kinetic properties of human placental adenosine kinase, purified 3600-fold, were studied. The reaction velocity had an absolute requirement for magnesium and varied with the pH. Maximal activity was observed at pH 6.5 with a Mg2+:ATP ranging from 1:1 to 2:1. High concentrations of Mg2+ or free ATP were inhibitory. Double reciprocal plots of initial velocity studies yielded intersecting lines for both adenosine and MgATP2-. The Michaelis constant was 0.4 micro M for adenosine and 75 micro M for MgATP2-. Inhibition by adenosine was observed at concentrations greater than 2.5 micro M. AMP was a competitive inhibitor with respect to adenosine and a noncompetitive inhibitor with respect to ATP. ADP was a noncompetitive inhibitor with respect to adenosine and ATP. Hyperbolic inhibition was observed during noncompetitive inhibition of adenosine kinase by AMP and ADP. Other purine and pyrimidine nucleoside mono-, di-, and triphosphates were poor inhibitors in general. S-Adenosylhomocysteine and 2'-deoxyadenosine inhibited adenosine kinase. The data suggest that (a) MgATP2- is the true substrate of adenosine kinase, and both pH and [Mg2+] may regulate its activity; (b) the kinetic mechanisms of adenosine kinase is Ordered Bi Bi; and (c) adenosine kinase may be regulated by the concentrations of its products, AMP and ADP, but is relatively insensitive to other purine and pyrimidine nucleotides.  相似文献   

4.
ATP and adenosine are important extracellular regulators of glomerular functions. In this study, ATP release from glomeruli suspension and its extracellular metabolism were investigated. Basal extraglomerular ATP concentration (1nM) increased several fold during inhibition of ecto-ATPase activity, reflecting the basal ATP release rate. Mechanical perturbation increased the amounts of ATP released from glomeruli. ATP added to glomeruli was almost completely degraded within 20 minutes. In that time, AMP was the main product of extracellular ATP metabolism. Significant accumulation of AMP was observed after 5 min (194 +/-16 microM) and 20 min (271 +/-11 microM), whereas at the same time concentration of adenosine was only 10 muM. A competitive inhibitor of ecto-5-nucleotidase alpha-beta-methylene-ADP (AOPCP), decreased extraglomerular ATP and adenosine concentration by 80% and 50%, respectively. Similarly, AMP (100 microM) also markedly reduced extraglomerular ATP accumulation, whereas IMP, its deamination product, was not effective. P1, P5-diadenosine pentaphosphate (Ap5A) - an inhibitor of ecto-adenylate kinase prevented significantly the disappearance of ATP from extraglomerular media caused by AMP. These findings demonstrate that the decrease in extracellular ATP concentration observed after addition of AOPCP or AMP is caused by the presence of ecto-adenylate kinase activity in the glomeruli. The enzyme catalyses reversible reaction 2ADP<->ATP+AMP, and a rise in the AMP concentration can lead to fall in ATP level. The present study provides evidence the extraglomerular accumulation of ATP reflects both release of ATP from glomeruli cells and its metabolism by ecto-enzymes. Our data suggest that AMP, produced from ATP in the Bowman's capsular space, might plays a dual role as a substrate for ecto-adenylate kinase and ecto-nucleotidase reactions being responsible for the regulation of intracapsular ATP and adenosine concentration. We conclude that AMP degrading and converting ecto-enzymes effectively determine the balance between ATP and adenosine concentration and thus the activation of P2 and/or adenosine receptors.  相似文献   

5.
The activity of myocardial adenosine kinase (E.N. 2.7.1.20) in a number of species was assayed. Rat heart contained the highest specific activity. From this source adenosine kinase was purified in a simple way 80-fold, until it was free of adenosine deaminase activity. A molecular weight of about 39 000 was measured. NSC 113939 (1), NSC 113940 and 8-azaadenosine inhibited myocardial adenosine kinase. Dipyridamole stimulated the enzyme at high adenosine levels, and inhibited at low substrate concentrations. A number of divalent cations could (partially) substitute for Mg2+. The optimal concentration of MgCl2 or MnCl2 was about 0.5 mM; concentrations exceeding 1 mM inhibited severely. An apparent Km for ATP of 0.1 mM was measured, whereas an apparent Km for adenosine of 0.5 muM was was found. The latter increased to 3.3 muM, when dipyridamole was added. Replacement of ATP by GTB or ITP increased the activity, and UTP and CTP were inferior as a phosphate donor.  相似文献   

6.
A method for the preparation of a homogenous catalytic subunit of adenosine 3':5'-monophosphate-dependent protein kinase from pigeon breast muscle was developed. The molecular weight of the enzyme as determined by electrophoresis in the presence of sodium dodecyl sulfate was found to be 42000. The pH optimum of the catalytic subunit was around 8.0. The active site of the catalytic subunit was studied using some derivatives of ATP, containing different reactive groups in the triphosphate chain of the molecule. It may be assumed that the pH optimum of the enzyme inactivation by adenosine 5'-chloromethylpyrophosphonate and the protective effect of ATP suggest covalent binding of the imidazole ring in the enzyme active site. The kinetic mechanism of the protein kinase reaction was studied using the initial rate experiments and reaction product inhibition. The results obtained were consistent with a random Bi-Bi kinetic mechanism.  相似文献   

7.
Human placental deoxyadenosine and deoxyguanosine phosphorylating activity   总被引:2,自引:0,他引:2  
We studied deoxyadenosine and deoxyguanosine phosphorylating activities in human placental cytosol. The specific activities of nucleoside kinase enzymes in nanomoles per h per mg +/- SD were as follows: adenosine kinase, 30 +/- 14; deoxyadenosine kinase, 12 +/- 2; deoxycytidine kinase, 0.30 +/- 0.04; and deoxyguanosine kinase, 27 +/- 16. Three major activities were resolved by ion exchange and affinity chromatography: deoxyguanosine-deoxycytidine kinase, deoxycytidine-deoxyadenosine kinase, and adenosine-deoxyadenosine kinase. Two other activities contained significant quantities of deoxyadenosine kinase. Deoxyguanosine-phosphorylating activity eluted as a single peak in association with deoxycytidine kinase. This deoxyguanosine-deoxycytidine kinase had an apparent molecular weight of 54,000, a Stokes radius of 31 A, and apparent Km values of 10, 130, and 14 microM for deoxyguanosine, deoxycytidine, and ATP, respectively. Four peaks of deoxyadenosine phosphorylating activity were resolved by affinity chromatography with AMP-Sepharose 4B. Adenosine-deoxyadenosine kinase had an apparent molecular weight of 38,000, a Stokes radius of 27.4 A, and apparent Km values of 0.4, 510, and 75 microM for adenosine, deoxyadenosine, and ATP, respectively. Attempts to distinguish whether adenosine-deoxyadenosine kinase was one enzyme with these two activities or two separate enzymes suggested that the former was the case. Deoxycytidine-deoxyadenosine kinase had apparent Km values of 0.7, 670, and 12 microM for deoxycytidine, deoxyadenosine, and ATP, respectively. Its apparent molecular weight was estimated to be 49,000 and its Stokes radius 30 A. Two other minor peaks of deoxyadenosine-phosphorylating activity had characteristics different from either deoxycytidine kinase or adenosine kinase-associated deoxyadenosine kinase. Our studies indicate that human placental cytosol contains a complex mixture of nucleoside kinase enzymes.  相似文献   

8.
There is evidence that phosphatidylcholine secretion in type II pneumocytes is stimulated by adenosine and adenine nucleotides and that the effect of adenosine is mediated by the A2 subtype of the P1 purinoceptor. To determine if the effect of ATP is also mediated by the same receptor following its catabolism to adenosine or by the P2 purinoceptor we compared the effects of adenosine and ATP. Adenosine and terbutaline stimulated phosphatidylcholine secretion approx. 2-fold, while ATP stimulated it by more than 3-fold, essentially to the same extent as the protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate. The stimulatory effect of adenosine but not of ATP was abolished by adenosine deaminase. The effect of ATP was markedly diminished by the P2 desensitizing agent alpha,beta-methylene ATP, but only slightly by the P1 antagonist 8-phenyltheophylline. Adenosine increased the cAMP content of type II cells while ATP had little effect. The effects of ATP and terbutaline were additive while those of adenosine and terbutaline were not. These data show that ATP and adenosine stimulate phosphatidylcholine secretion via different mechanisms. Therefore, the effect of ATP is not mediated via catabolism to adenosine. Metabolically resistant analogs of ATP also stimulated secretion in a concentration-dependent manner although none were as potent as ATP. The order of potency was ATP greater than beta,gamma-methylene ATP = 2-methylthio ATP = 2-deoxy ATP greater than or equal to 8-bromo ATP greater than alpha,beta-methylene ATP. The facts that ATP analogs also stimulate secretion and that the effect of ATP was antagonized by alpha,beta-methylene ATP suggest that the stimulatory effect of ATP is mediated by the P2 purinoceptor.  相似文献   

9.
Effects of adenosine and some of its derivatives on beef protein kinase activity were investigated in vitro. Adenosine rapidly inhibited protein kinase activity in a dose-dependent manner. Significant inhibition occured with 10 μM and half-maximal inhibition at 100 μM adenosine. Inhibition was almost complete with 5 mM adenosine. Inhibition was similar whether protein kinase activity was assayed with or without cyclic AMP. The inhibition by adenosine was reversed by increasing the concentration of ATP and Lineweaver-Burk analysis indicated that adenosine inhibition was competitive with ATP. Addition of adenosine deaminase to the incubation medium prevented the inhibition induced by adenosine. Intact 1 and N6 positions of adenosine were important for the inhibition since their mondification was associated with loss of inhibition. Modification of the 8 position of adenosine decreased, but did not abolish, the inhibition. The 2 and 3 position of ribose did not seem to be critical since 2- and 3-deoxyadenosine produced inhibition similar to that of adenosine.  相似文献   

10.
Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5′-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5′nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5′-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine.  相似文献   

11.
Effects of adenosine and some of its derivatives on beef protein kinase activity were investigated in vitro. Adenosine rapidly inhibited protein kinase activity in a dose-dependent manner. Significant inhibition occurred with 10 muM and half-maximal inhibition at 100 muM adenosine. Inhibition was almost complete with 5 mM adenosine. Inhibition was similar whether protein kinase activity was assayed with or without cyclic AMP. The inhibition by adenosine was reversed by increasing the concentration of ATP and Lineweaver-Burk analysis indicated that adenosine inhibition was competitive with ATP. Addition of adenosine deaminase to the incubation medium prevented the inhibition induced by adenosine. Intact 1 and N6 positions of adenosine were important for the inhibition since their modification was associated with loss of inhibition. Modification of the 8 position of adenosine decreased, but did not abolish, the inhibition. The 2 and 3 position of ribose did not seem to be critical since 2- and 3-deoxyadenosine produced inhibition similar to that of adenosine.  相似文献   

12.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

13.
The diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S), adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) could act as substrates for phosphomevalonate kinase in the presence of Mg2+ and Cd2+ as activating divalent metal cations. The Sp diastereomer of ATP alpha S was the preferred substrate regardless of the metal ion used, consistent with the metal ion not binding to the alpha-phosphate. With ATP beta S, the Sp diastereomer was the preferred substrate with Mg2+, and the Rp diastereomer was the preferred substrate with Cd2+. The reversal of specificity establishes that the metal is chelated through the beta-phosphate in the active site of the phosphomevalonate kinase reaction. A comparison of the Vmax values as a function of substitution of oxygen by sulfur showed the order for Mg2+ to be: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Sp) greater than ATP gamma S greater than ATP beta S(Rp). With Cd2+ as the activating metal ion, the order was: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Rp) greater than ATP gamma S greater than ATP beta S(Sp). It is concluded that the chelate structure of metal ATP substrate in the phosphomevalonate kinase reaction is the delta, beta, gamma-bidentate complex. 31P NMR measurements and radioassay with [2-14C] phosphomevalonate were used to measure the equilibrium of the reaction catalyzed by phosphomevalonate kinase with ATP and phosphorothioate analogues of ATP as the phosphoryl group donor. The order as a phosphate donor as determined by both methods in the phosphomevalonate kinase reaction is ATP beta S greater than ATP alpha S greater than ATP greater than ATP gamma S. Except for ATP gamma S, the equilibrium is shifted in the direction of formation of ADP alpha S and ADP beta S relative to ADP formation. Thus, ATP beta S rather than ATP would be effective for the synthesis of diphosphomevalonate. The phosphomevalonate kinase reaction could also be used to synthesize mevalonate 5-(2-thiodiphosphate) using ATP gamma S as the phosphoryl group donor.  相似文献   

14.
Preservation of the oxidative phosphorylation capacity of mitochondria by addition of ATP under anaerobic conditions was analyzed by use of non-metabolizable adenine nucleotide analogs. The capacity was well preserved in the presence of ATP and did not require the hydrolysis of ATP, since ATP analogs, such as beta, gamma-methylene adenosine triphosphate (AMPPCP), alpha, beta-methylene adenosine triphosphate (AMPCPP), and adenylyl imidodiphosphate (AMPPNP), were as effective as ATP. These analogs were incorporated into mitochondria through ATP/ADP translocase to maintain the original level of total adenine nucleotides in the mitochondria. ADP apparently had the same effect as ATP, but its effect was shown to be due to ATP generated from it by adenylate kinase in mitochondria. An analog of ADP, alpha, beta-methylene adenosine diphosphate (AMPCP), which was found to be a substrate of the translocase but not of adenylate kinase, could not replace ADP or ATP. From these results, it was concluded that the oxidative phosphorylation capacity of mitochondria was maintained by ATP, but not ADP, through a process not requiring energy.  相似文献   

15.
The currently approved kinase inhibitors for therapeutic uses and a number of kinase inhibitors that are undergoing clinical trials are directed toward the adenosine triphosphate (ATP) binding site of protein kinases. The 5'-fluorosulfonylbenzoyl 5'-adenosine (FSBA) is an ATP-affinity reagent that covalently modifies a conserved lysine present in the nucleotide-binding site of most kinases. The authors have developed a liquid chromatography/mass spectrometry-based method to monitor binding of ATP competitive protein kinase inhibitors using FSBA as a nonselective activity-based probe for protein kinases. Their method provides a general, rapid, and reproducible means to screen and validate selective ATP competitive inhibitors of protein kinases.  相似文献   

16.
Adenylylsulfate kinase (ATP:adenylylsulfate 3'-phosphotransferase, EC 2.7.1.25) has been purified over 1300-fold from rat liver in 10% yield. The enzyme has a molecular weight of 58,000 and is composed of four subunits of equal molecular weight. ATP is an allosteric activator of adenylylsulfate kinase, with a Hill coefficient of 2.2 and a K0.5 of 2.5 mM. Adenosine phosphosulfate is a potent inhibitor of adenylylsulfate kinase, but the adenosine phosphosulfate concentration for maximal reaction is dependent on the ATP concentration. At the physiological levels of ATP the inhibition by adenosine phosphosulfate is not likely to play a role, while the allosteric regulation of adenylylsulfate kinase by ATP may be operative.  相似文献   

17.
It has been hypothesized that an interaction among adenosine A(1) receptors, protein kinase C (PKC) activation, and ATP-sensitive potassium channels (K(ATP)) mediates ischemic preconditioning in experiments on different animal species. The purpose of this study was to determine if activation of K(ATP) is functionally coupled to A(1) receptors and (or) PKC activation during metabolic inhibition (MI) in guinea pig ventricular myocytes. Perforated-patch using nystatin and conventional whole-cell recording methods were used to observe the effects of adenosine and adenosine-receptor antagonists on the activation of K(ATP) currents during MI induced by application of 2,4-dinitrophenol (DNP) and 2-deoxyglucose (2DG) without glucose, in the presence or absence of a PKC activator, phorbol 12-myristate 13-acetate (PMA). Adenosine accelerated the time course activation of K(ATP) currents during MI under the intact intracellular condition or dialyzed condition with l mmol/L ATP in the pipette solution. The accelerated effect of adenosine activation of K(ATP) under MI was not reversed by a nonselective Al adenosine receptor antagonist, 8-(p-sulfophenyl)theophylline (SPT), or a specific Al adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). However, the adenosine A(2) receptor antagonist alloxazine reversed the time course activation of the K(ATP) current under MI. An adenylate cyclase activator, forskolin, did not further abbreviate the time course activation of K(ATP) with or without adenosine. Application of a PKC blocker, chelerythrine, reversed the time course activation of K(ATP) by adenosine under MI. In addition, pretreatment with a PKC activator, PMA, had similar effects to adenosine, while adenosine did not further shorten the time required for activation of K(ATP) currents during MI with PMA pretreatment. There is no direct evidence of activation of K(ATP) currents by adenosine A(1) receptor during metabolic inhibition under our experimental condition. However, adenosine A(2) receptor activation is involved in the K(ATP) channel activation in the guinea pig ventricular myocytes, of which effect is not mediated through the increase in intracellular cAMP. Adenosine seems to interact with PKC activation to open K(ATP) during MI, but a possible link between the adenosine A(2) receptor and PKC activation in this process needs further elucidation.  相似文献   

18.
The authors describe an assay to measure the generation of adenosine 5'-diphosphate (ADP) resulting from phosphorylation of a substrate by a kinase. ADP accumulation is detected by conversion to a fluorescent signal via a coupled enzyme system. The technology has potential applications for the assessment of inhibitor potency and mode of action as well as kinetic analysis of enzyme activity. The assay has a wide dynamic range (0.25-75 microM) and has been validated with several kinases including the highly active cyclic adenosine monophosphate-dependent protein kinase (PKAalpha), casein kinase 1 (CK1), and the weakly active kinase Jun N-terminal kinase 2 (Jnk2alpha2). Kinase activity can be measured either in an end point or continuous mode. Assay performance in end point mode was compared with an adenosine 5'-triphosphate (ATP) depletion assay and in continuous mode with a pyruvate kinase/lactate dehydrogenase coupled assay. The ability to characterize kinase kinetics was demonstrated by deriving ATP/substrate affinity (Michaelis-Menten constant; K(m)) values for PKAalpha, CK1, and Jnk2alpha2. The assay readily measured activity with kinase reactions using protein substrates, indicating the suitability for use with large macromolecules. A wide range of inhibitor activities could be determined even in the presence of high ATP concentrations, making the assay highly suitable to characterize the mode of action of the inhibitor in question. Collectively, this assay provides a homogenous, generic method for a number of applications in kinase drug discovery.  相似文献   

19.
The extension of microglial processes toward injured sites in the brain is triggered by the stimulation of the purinergic receptor P2Y(12) by extracellular ATP. We recently showed that P2Y(12) stimulation by ATP induces microglial process extension in collagen gels. In the present study, we found that a P2Y(12) agonist, 2-methylthio-ADP (2MeSADP), failed to induce the process extension of microglia in collagen gels and that co-stimulation with adenosine, a phosphohydrolytic derivative of ATP, and 2MeSADP restored the chemotactic process extension. An adenosine A3 receptor (A3R)-selective agonist restored the chemotactic process extension, but other receptor subtype agonists did not. The removal of adenosine by adenosine deaminase and the blocking of A3R by an A3R-selective antagonist inhibited ADP-induced process extension. The A3R antagonist inhibited ADP-induced microglial migration, and an A3R agonist promoted 2MeSADP-stimulated migration. ADP and the A3R agonist activated Jun N-terminal kinase in microglia, and a Jun N-terminal kinase inhibitor inhibited the ADP-induced process extension. An RT-PCR analysis showed that A1R and A3R were expressed by microglia sorted from adult rat brains and that the A2AR expression level was very low. These results suggested that A3R signaling may be involved in the ADP-induced process extension and migration of microglia.  相似文献   

20.
Purified adenosine kinase from L1210 cells displayed substrate inhibition by high concentrations of adenosine (Ado), ATP, and MgCl2. When incubated with ATP and MgCl2, the enzyme was phosphorylated, and the phosphorylated kinase transferred phosphate to adenosine in the absence of ATP and MgCl2. Substrate binding, isotope exchange, and kinetic studies suggested that the enzyme catalyzes the reaction by means of a two-site ping-pong mechanism with the phosphorylated enzyme as an obligatory intermediate. Among many possible pathways within this mechanism probably a random-bi ordered-bi route is the preferred sequence in which the two substrates, adenosine and MgATP, bind in a random order to form the ternary complex MgATP . E . Ado followed by the sequential dissociation of MgADP and AMP. Dissociation constants of various enzyme-substrate and enzyme-product complexes and the first-order rate constant of the rate-limiting step were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号