首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C-terminal region of mitogen-activated protein kinase kinase-1 and 2 (MKK1 and MKK2) may function in regulating interactions with upstream kinases or the magnitude and duration of ERK mitogen-activated protein kinase activity. The MKK C-terminal region contains a proline-rich region that reportedly functions in regulating interactions with the Raf-1 kinase and ERK activity. In addition, phosphorylation sites in the C terminus of MKK1 have been suggested to either sustain or attenuate MKK1 activity. To further understand how phosphorylation at the C terminus of MKK1 and protein interactions regulate MKK1 function, we have generated several MKK1 C-terminal deletion mutants and examined their function in regulating MKK1 localization, ERK protein activation, and cell growth. A deletion of C-terminal amino acids encompassing two putative alpha-helices between residues 330 and 379 caused a re-distribution of mutant MKK1 proteins to membrane compartments. Immunofluorescence analysis of MKK1 mutants revealed a loss of homogenous cytosolic distribution that is typically observed with MKK1 wild type, suggesting this region regulates MKK1 cellular localization. In contrast, MKK1 C-terminal deletion mutants localized to various sized punctate regions that overlapped with lysosome compartments. ERK activation in response to constitutively active Raf-1 or growth factor stimulus was attenuated in cells expressing MKK1 C-terminal deletion mutants. This could be partly explained by the inability of Raf-1 to phosphorylate MKK1 C-terminal deletion mutants even though the phosphorylation sites were intact in these mutants. Finally, we show that cells expressing MKK1 C-terminal deletion mutants displayed characteristic patterns of apoptotic cell death and reduced cell proliferation. These findings identify a novel C-terminal region between amino acid residues 330 and 379 on MKK1 that is necessary for regulating the cytoplasmic distribution and subsequent ERK protein activation necessary for cell survival and viability.  相似文献   

2.
The mitogen-activated protein (MAP) kinases, extracellular signal-related kinase 1 (ERK1) and ERK2, regulate cellular responses by mediating extracellular growth signals toward cytoplasmic and nuclear targets. A potential target for ERK is topoisomerase IIalpha, which becomes highly phosphorylated during mitosis and is required for several aspects of nucleic acid metabolism, including chromosome condensation and daughter chromosome separation. In this study, we demonstrated interactions between ERK2 and topoisomerase IIalpha proteins by coimmunoprecipitation from mixtures of purified enzymes and from nuclear extracts. In vitro, diphosphorylated active ERK2 phosphorylated topoisomerase IIalpha and enhanced its specific activity by sevenfold, as measured by DNA relaxation assays, whereas unphosphorylated ERK2 had no effect. However, activation of topoisomerase II was also observed with diphosphorylated inactive mutant ERK2, suggesting a mechanism of activation that depends on the phosphorylation state of ERK2 but not on its kinase activity. Nevertheless, activation of ERK by transient transfection of constitutively active mutant MAP kinase kinase 1 (MKK1) enhanced endogenous topoisomerase II activity by fourfold. Our findings indicate that ERK regulates topoisomerase IIalpha in vitro and in vivo, suggesting a potential target for the MKK/ERK pathway in the modulation of chromatin reorganization events during mitosis and in other phases of the cell cycle.  相似文献   

3.
MAPK/ERK kinase kinase 3 (MEKK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that functions upstream of the MAP kinases and IkappaB kinase. Phosphorylation is believed to be a critical component for MEKK3-dependent signal transduction, but little is known about the phosphorylation sites of this MAP3K. To address this question, point mutations were introduced in the activation loop (T-loop), substituting alanine for serine or threonine, and the mutants were transfected into HEK293 Epstein-Barr virus nuclear antigen cells. MEKK3-dependent activation of an NF-kappaB reporter gene as well as ERK, JNK, and p38 MAP kinases correlated with a requirement for serine at position 526. Constitutively active mutants of MEKK3, consisting of S526D and S526E, were capable of activating a NF-kappaB luciferase reporter gene as well as ERK and MEK, suggesting that a negative charge at Ser526 was necessary for MEKK3 activity and implicating Ser526 as a phosphorylation site. An antibody was developed that specifically recognized phospho-Ser526 of MEKK3 but did not recognize the S526A point mutant. The catalytically inactive (K391M) mutant of MEKK3 was not phosphorylated at Ser526, indicating that phosphorylation of Ser526 occurs via autophosphorylation. Endogenous MEKK3 was phosphorylated on Ser526 in response to osmotic stress. In addition, phosphorylation of Ser526 was required for MKK6 phosphorylation in vitro, whereas dephosphorylation of Ser526 was mediated by protein phosphatase 2A and sensitive to okadaic acid and sodium fluoride. Finally, the association between MEKK3 and 14-3-3 was dependent on Ser526 and prevented dephosphorylation of Ser526. In summary, Ser526 of MEKK3 is an autophosphorylation site within the T-loop that is regulated by PP2A and 14-3-3 proteins.  相似文献   

4.
Many protein kinases require phosphorylation at their activation loop for induction of catalysis. Mitogen-activated protein kinases (MAPKs) are activated by a unique mode of phosphorylation, on neighboring Tyrosine and Threonine residues. Whereas many kinases obtain their activation via autophosphorylation, MAPKs are usually phosphorylated by specific, dedicated, MAPK kinases (MAP2Ks). Here we show however, that the yeast MAPK Hog1, known to be activated by the MAP2K Pbs2, is activated in pbs2Δ cells via an autophosphorylation activity that is induced by osmotic pressure. We mapped a novel domain at the Hog1 C-terminal region that inhibits this activity. Removal of this domain provides a Hog1 protein that is partially independent of MAP2K, namely, partially rescues osmostress sensitivity of pbs2Δ cells. We further mapped a short domain (7 amino acid residues long) that is critical for induction of autophosphorylation. Its removal abolishes autophosphorylation, but maintains Pbs2-mediated phosphorylation. This 7 amino acids stretch is conserved in the human p38α. Similar to the case of Hog1, it’s removal from p38α abolishes p38α’s autophosphorylation capability, but maintains, although reduces, its activation by MKK6. This study joins a few recent reports to suggest that, like many protein kinases, MAPKs are also regulated via induced autoactivation.  相似文献   

5.
Inhibition of glycogen synthase kinase-3beta (GSK3beta) is one of the mechanisms by which phosphatidylinositol 3-kinase (PI3K) activation protects neurons from apoptosis. Here, we report that inhibition of ERK1/2 increased the basal activity of GSK3beta in cortical neurons and that both ERK1/2 and PI3K were required for brain-derived neurotrophic factor (BDNF) suppression of GSK3beta activity. Moreover, cortical neuron apoptosis induced by expression of recombinant GSK3beta was inhibited by coexpression of constitutively active MKK1 or PI3K. Activation of both endogenous ERK1/2 and PI3K signaling pathways was required for BDNF to block apoptosis induced by expression of recombinant GSK3beta. Furthermore, cortical neuron apoptosis induced by LY294002-mediated activation of endogenous GSK3beta was blocked by expression of constitutively active MKK1 or by BDNF via stimulation of the endogenous ERK1/2 pathway. Although both PI3K and ERK1/2 inhibited GSK3beta activity, neither had an effect on GSK3beta phosphorylation at Tyr-216. Interestingly, PI3K (but not ERK1/2) induced the inhibitory phosphorylation of GSK3beta at Ser-9. Significantly, coexpression of constitutively active MKK1 (but not PI3K) still suppressed neuronal apoptosis induced by expression of the GSK3beta(S9A) mutant. These data suggest that activation of the ERK1/2 signaling pathway protects neurons from GSK3beta-induced apoptosis and that inhibition of GSK3beta may be a common target by which ERK1/2 and PI3K protect neurons from apoptosis. Furthermore, ERK1/2 inhibits GSK3beta activity via a novel mechanism that is independent of Ser-9 phosphorylation and likely does not involve Tyr-216 phosphorylation.  相似文献   

6.
Src homology 3 domain-containing proline-rich kinase (SPRK)/mixed lineage kinase-3 is a serine/threonine kinase that has been identified as an upstream activator of the c-Jun NH(2)-terminal kinase (JNK) pathway. SPRK is capable of activating MKK4 by phosphorylation of serine and threonine residues, and mutant forms of MKK4 that lack the phosphorylation sites Ser(254) and Thr(258) block SPRK-induced JNK activation. A region of 63 amino acids following the kinase domain of SPRK is predicted to form a leucine zipper. The leucine zipper domain of SPRK has been shown to be necessary and sufficient for SPRK oligomerization, but its role in regulating activation of SPRK and downstream signaling remains unclear. In this study, we substituted a proposed stabilizing leucine residue in the zipper domain with a helix-disrupting proline to abrogate zipper-mediated SPRK oligomerization. We demonstrate that constitutively activated Cdc42 fully activates this monomeric SPRK mutant in terms of both autophosphorylation and histone phosphorylation activity and induces the same in vivo phosphorylation pattern as wild type SPRK. However, this catalytically active SPRK zipper mutant is unable to activate JNK. Our data show that the monomeric SPRK mutant fails to phosphorylate one of the two activating phosphorylation sites, Thr(258), of MKK4. These studies suggest that zipper-mediated SPRK oligomerization is not required for SPRK activation by Cdc42 but instead is critical for proper interaction and phosphorylation of a downstream target, MKK4.  相似文献   

7.
MST1 is a member of the Sterile-20 family of cytoskeletal, stress, and apoptotic kinases. MST1 is activated by phosphorylation at previously unidentified sites. This study examines the role of phosphorylation at several sites and effects on kinase activation. We define Thr(183) in subdomain VIII as a primary site of phosphoactivation. Thr(187) is also critical for kinase activity. Phosphorylation of MST1 in subdomain VIII was catalyzed by active MST1 via intermolecular autophosphorylation, enhanced by homodimerization. Active MST1 (wild-type or T183E), but not inactive Thr(183)/Thr(187) mutants, was also highly autophosphorylated at the newly identified Thr(177) and Thr(387) residues. Cells expressing active MST1 were mostly detached, whereas with inactive MST1, adhesion was normal. Active MKK4, JNK, caspase-3, and caspase-9 were detected in the detached cells. These cells also contained all autophosphorylated and essentially all caspase-cleaved MST1. Similar phenotypes were elicited by a caspase-insensitive D326N mutant, suggesting that kinase activity, but not cleavage of MST1, is required. Interestingly, an S327E mutant mimicking Ser(327) autophosphorylation was also caspase-insensitive, but only when expressed in caspase-3-deficient cells. Together, these data suggest a model whereby MST1 activation is induced by existing, active MST kinase, which phosphorylates Thr(183) and possibly Thr(187). Dimerization promotes greater phosphorylation. This leads to induction of the JNK signaling pathway, caspase activation, and apoptosis. Further activation of MST1 by caspase cleavage is best promoted by caspase-3, although this appears to be unnecessary for signaling and morphological responses.  相似文献   

8.
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest.  相似文献   

9.
MAPK/ERK kinase kinase 2 (MEKK2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of protein kinases. MAP3Ks are components of a three-tiered protein kinase pathway in which a MAP3K phosphorylates and activates a mitogen-activated protein kinase kinase (MAP2K), which in turn activates a mitogen-activated protein kinase (MAPK). We have previously identified residues within protein kinase subdomain X in the MAP3K, MEKK1, that are critical for its interaction with the MAP2K, MKK4, and MEKK1-induced MKK4 activation. We report here that kinase subdomain X also plays a critical role in MEKK2 activity. Select point mutations in subdomain X impair MEKK2 phosphorylation of the MAP2Ks, MKK7 and MEK5, abolish MEKK2-induced activation of the MAPKs, JNK1 and ERK5, and diminish MEKK2-dependent activation of an AP-1 reporter gene. Interestingly, the spectrum of mutations in subdomain X of MEKK2 that affects its activity is overlapping with but not identical to those that have effects on MEKK1. Thus, mutations in subdomain X differentially affect MEKK2 and MEKK1.  相似文献   

10.
The protein kinase AKT is a key regulator for cell growth, cell survival and metabolic insulin action. However, the mechanism of activation of AKT in vivo, which presumably involves membrane recruitment of the kinase, oligomerization, and multiple phosphorylation events, is not fully understood. In the present study, we have expressed and purified dimeric GST-fusion proteins of human protein kinase AKT2 (DeltaPH-AKT2) in milligram quantities via the baculovirus expression system. Treatment of virus-infected insect cells with the phosphatase inhibitor okadaic acid (OA) led to phosphorylation of the two regulatory phosphorylation sites, Thr309 and Ser474, and to activation of the kinase. Likewise, phosphorylation of Thr309 in vitro by recombinant PDK1 or mutation of Thr309 and Ser474 to acidic residues rendered the kinase constitutively active. However, even though the specific activity of our AKT2 was increased 15-fold compared to previous reports, GST-mediated dimerization alone did not lead to an activation of the kinase. Whereas both mutagenesis and phosphorylation led to an increase in the turnover number of the enzyme, only the latter resulted in a marked reduction (20-fold) of the apparent Km value for the exogenous substrate Crosstide, indicating that this widely used mutagenesis only partially mimics phosphorylation. Kinetic analysis of GST-AKT2 demonstrates that phosphorylation of Thr309 in the activation loop of the kinase is largely responsible for the observed reduction in Km and for a subsequent 150-fold increase in the catalytic efficiency (k(cat)/Km) of the enzyme. Highly active AKT2 constructs were used in autophosphorylation reactions in vitro, where inactive AKT2 kinases served as substrates. As a matter of fact, we found evidence for a minor autophosphorylation activity of AKT2 but no significant autophosphorylation of any of the two regulatory sites, Thr309 or Ser474.  相似文献   

11.
Stress factors, such as osmotic stress and genotoxic agents, activate stress kinases, whereas growth factors preferentially stimulate the structurally homologous mitogen-activated protein kinases, ERK1/2. Hyperosmolarity also has insulin-mimicking action as reflected by ERK1/2 activation and by the stimulation of glucose uptake in adipocytes. We examined to what extent hyperosmolarity activates components of the insulin receptor (IR) signalling pathway. CHO cells expressing the human IR were treated with 500 mM NaCl or 700 mM sorbitol and the activation of insulin signalling intermediates was studied. Hyperosmolarity induced tyrosine phosphorylation of the IR beta-subunit, and the adaptor proteins p52-Shc, p66-Shc, and IRS1. Furthermore, the stress kinases JNK and p38 were activated. When CHO cells were transfected with a kinase-dead IR (K1030R) mutant, hyperosmolarity did not induce tyrosine phosphorylation of the IR, indicating that hyperosmolarity induced IR autophosphorylation directly, rather than inducing phosphorylation by an exogenous tyrosine kinase. A partially purified and detergent-solubilized IR was not phosphorylated in response to hyperosmolarity, suggesting that hyperosmolarity activates the receptor only when present in the plasma membrane. In cells stably expressing the kinase-dead IR, IRS1 and Shc Tyr phosphorylation was abrogated, indicating that the hyperosmolarity signalling was dependent on an active IR tyrosine kinase. In contrast, the stress kinases p38 and JNK were normally activated by hyperosmolarity in the IR-K1030R mutant. We conclude that, at least in CHO cells, hyperosmolarity signals partially through IR autophosphorylation and subsequent activation of the IR downstream targets. This may be responsible for some of the insulin-mimicking effects of hyperosmolarity. The activation of stress kinases by hyperosmolarity occurs independent of the IR.  相似文献   

12.
Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway   总被引:24,自引:0,他引:24  
Mody N  Leitch J  Armstrong C  Dixon J  Cohen P 《FEBS letters》2001,502(1-2):21-24
Antibodies that recognise the active phosphorylated forms of mitogen-activated protein kinase (MAPK) kinase 5 (MKK5) and extracellular signal-regulated kinase 5 (ERK5) in untransfected cells have been exploited to show that the epidermal growth factor (EGF)-induced activation of MKK5 and ERK5 occurs subsequent to the activation of ERK1 and ERK2 in HeLa cells. The drugs U0126 and PD184352, which prevent the activation of MKK1 (and hence the activation of ERK1/ERK2), also prevent the activation of MKK5, although higher concentrations are required. Our studies define physiological targets of the MKK5/ERK5 pathway as proteins whose phosphorylation is largely prevented by 10 microM PD184352, but unaffected by 2 microM PD184352. Surprisingly, 2 microM PD184352 prolongs the activation of MKK5 and ERK5 induced by EGF or H(2)O(2), indicating negative control of the MKK5/ERK5 pathway by the classical MAPK cascade. Our results also indicate that ERK5 is not a significant activator of MAPK-activated protein kinase-1/RSK in HeLa cells.  相似文献   

13.
Phosphorylation of the extracellular signal-regulated kinases (ERKs) on tyrosine and threonine residues within the TEY tripeptide motif induces ERK activation and targeting of substrates. Although it is recognized that phosphorylation of both residues is required for ERK activation, it is not known if a single phosphorylation of either residue regulates physiological functions. In light of recent evidence indicating that ERK proteins regulate substrate function in the absence of ERK enzymatic activity, we have begun to examine functional roles for partially phosphorylated forms of ERK. Using phosphorylation site--specific ERK antibodies and immunofluorescence, we demonstrate that ERK phosphorylated on the tyrosine residue (pY ERK) within the TEY activation sequence is found constitutively in the nucleus, and localizes to the Golgi complex of cells that are in late G2 or early mitosis of the cell cycle. As cells progress through metaphase and anaphase, pY ERK localization to Golgi vesicles is most evident around the mitotic spindle poles. During telophase, pY ERK associates with newly formed Golgi vesicles but is not found on there after cytokinesis and entry into G1. Increased ERK phosphorylation causes punctate distribution of several Golgi proteins, indicating disruption of the Golgi structure. This observation is reversible by overexpression of a tyrosine phosphorylation--defective ERK mutant, but not by a kinase-inactive ERK2 mutant that is tyrosine phosphorylated. These data provide the first evidence that pY ERK and not ERK kinase activity regulates Golgi structure and may be involved in mitotic Golgi fragmentation and reformation.  相似文献   

14.
Mos is a germ cell-specific serine/threonine protein kinase that activates mitogen-activated protein kinase (MAPK) through MAPK kinase (MKK). In Xenopus oocytes, Mos synthesis is required for progesterone-induced activation of MAPK and maturation promoting factor. Injection of Mos or active MAPK causes mitotic arrest in early embryos, suggesting that Mos also acts via MKK and MAPK to induce the arrest of unfertilized eggs in metaphase of meiosis II. We have investigated whether Mos activity is regulated by phosphorylation. Previous studies have identified Ser-3 as the principal autophosphorylation site. We show that Mos interacts with the catalytic domain of MKK in a Saccharomyces cerevisiae two-hybrid test. Acidic substitutions of the sites phosphorylated by Mos in MKK reduce the interaction, implying that the complex may dissociate after phosphorylation of MKK by Mos. Furthermore, the Mos-MKK interaction requires Mos kinase activity, suggesting that Mos autophosphorylation may be involved in the interaction. Substitution of Ser-3 of Mos with Ala reduces the interaction with MKK and also reduces both the activation of MKK by Mos in vitro and cleavage arrest induced by Mos fusion protein in Xenopus embryos. By contrast, substitution of Ser-3 by Glu, an acidic amino acid that mimics phosphoserine, fosters the Mos interaction with MKK and permits activation of MKK in vitro and Mos-induced cleavage arrest. Moreover, the Glu-3 substitution increases the interaction of a kinase-inactive Mos mutant with MKK. Taken together, these results suggest that an important step in Mos activation involves the phosphorylation at Ser-3, which promotes Mos interaction with and activation of MKK.  相似文献   

15.
The protein tyrosine kinase ZAP-70 is implicated in the early steps of the T-cell antigen receptor (TCR) signaling. Binding of ZAP-70 to the phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) of the TCR zeta chain through its two src-homology 2 (SH2) domains results in its activation coupled to phosphorylation on multiple tyrosine residues, mediated by Src kinases including Lck as well as by autophosphorylation. The mechanism of ZAP-70 activation following receptor binding is still not completely understood. Here we investigated the effect of intramolecular interactions and autophosphorylation by following the kinetics of recombinant ZAP-70 activation in a spectrophotometric substrate phosphorylation assay. Under these conditions, we observed a lag phase of several minutes before full ZAP-70 activation, which was not observed using a truncated form lacking the first 254 residues, suggesting that it might be due to an intramolecular interaction involving the interdomain A and SH2 region. Accordingly, the lag phase could be reproduced by testing the truncated form in the presence of recombinant SH2 domains and was abolished by the addition of diphosphorylated ITAM peptide. Preincubation with ATP or phosphorylation by Lck also abolished the lag phase and resulted in a more active enzyme. The same results were obtained using a ZAP-70 mutant lacking the interdomain B tyrosines. These findings are consistent with a mechanism in which ZAP-70 phosphorylation/autophosphorylation on tyrosine(s) other than 292, 315, and 319, as well as engagement of the SH2 domains by the phosphorylated TCR, can induce a conformational change leading to accelerated enzyme kinetics and higher catalytic efficiency.  相似文献   

16.
The dual-specificity MAPK phosphatase MKP-1/CL100/DUSP1 is an inducible nuclear protein controlled by p44/42 MAPK (ERK1/2) in a negative feedback mechanism to inhibit kinase activity. Here, we report on the molecular basis for a novel positive feedback mechanism to sustain ERK activation by triggering MKP-1 proteolysis. Active ERK2 docking to the DEF motif (FXFP, residues 339-342) of N-terminally truncated MKP-1 in vitro initiated phosphorylation at the Ser(296)/Ser(323) domain, which was not affected by substituting Ala for Ser at Ser(359)/Ser(364). The DEF and Ser(296)/Ser(323) sites were essential for ubiquitin-mediated MKP-1 proteolysis stimulated by MKK1-ERK signaling in H293 cells, whereas the N-terminal domain and Ser(359)/Ser(364) sites were dispensable. ERK activation by serum increased the endogenous level of ubiquitinated phospho-Ser(296) MKP-1 and the degradation of MKP-1. Intriguingly, active ERK-promoted phospho-Ser(296) MKP-1 bound to SCF(Skp2) ubiquitin ligase in vivo and in vitro. Forced expression of Skp2 enhanced MKP-1 polyubiquitination and proteolysis upon ERK activation, whereas depletion of endogenous Skp2 suppressed such events. The kinetics of ERK signaling stimulated by serum correlated with the endogenous MKP-1 degradation rate in a Skp2-dependent manner. Thus, MKP-1 proteolysis can be achieved via ERK and SCF(Skp2) cooperation, thereby sustaining ERK activation.  相似文献   

17.
Degradation of collagenous extracellular matrix by collagenase 1 (also known as matrix metalloproteinase 1 [MMP-1]) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, chronic ulcers, and tumor invasion and metastasis. Here, we have investigated the role of distinct mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-1 gene expression. The activation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (designated ERK1,2) pathway by oncogenic Ras, constitutively active Raf-1, or phorbol ester resulted in potent stimulation of MMP-1 promoter activity and mRNA expression. In contrast, activation of stress-activated c-Jun N-terminal kinase and p38 pathways by expression of constitutively active mutants of Rac, transforming growth factor beta-activated kinase 1 (TAK1), MAPK kinase 3 (MKK3), or MKK6 or by treatment with arsenite or anisomycin did not alone markedly enhance MMP-1 promoter activity. Constitutively active MKK6 augmented Raf-1-mediated activation of the MMP-1 promoter, whereas active mutants of TAK1 and MKK3b potently inhibited the stimulatory effect of Raf-1. Activation of p38 MAPK by arsenite also potently abrogated stimulation of MMP-1 gene expression by constitutively active Ras and Raf-1 and by phorbol ester. Specific activation of p38alpha by adenovirus-delivered constitutively active MKK3b resulted in potent inhibition of the activity of ERK1,2 and its upstream activator MEK1,2. Furthermore, arsenite prevented phorbol ester-induced phosphorylation of ERK1,2 kinase-MEK1,2, and this effect was dependent on p38-mediated activation of protein phosphatase 1 (PP1) and PP2A. These results provide evidence that activation of signaling cascade MKK3-MKK3b-->p38alpha blocks the ERK1,2 pathway at the level of MEK1,2 via PP1-PP2A and inhibits the activation of MMP-1 gene expression.  相似文献   

18.
ERK2 is a proline-directed protein kinase that displays a high specificity for a single threonine (Thr-38) on the substrate Ets-1, which lies within the consensus sequence 36phi-chi-Thr-Pro39 (where phi is typically a small hydrophobic residue and chi appears to be unrestricted). Thr-38 lies in a long flexible N-terminal tail (residues 1-52), which also contains a second potential phosphorylation site, Ser-26. How Ets-1 binds ERK2 to promote the phosphorylation of Thr-38 while simultaneously discriminating against the phosphorylation of Ser-26 is unclear. To delineate the details of the molecular recognition of Ets-1 by ERK2, the binding of various mutants and truncations of Ets-1 were analyzed by fluorescence anisotropy. The data that were obtained support the notion that the N-terminal tail contains a previously unrecognized docking site that promotes the phosphorylation of Thr-38. This new docking site helps assemble the complex of Ets-1 and ERK2 and makes a similar contribution to the stabilization of the complex as does the pointed domain of Ets-1. The in vitro activation of ERK2 by MKK1 induces a large conformational transition of the activation segment (DFG-APE), but neither induces self-association of ERK2 nor destabilizes the stability of the ERK2.Ets-1 complex. This latter observation suggests that interactions intrinsic to the active site are not important for complex assembly, a notion further supported by the observation that the substitution of a number of different amino acids for Pro-39 does not destabilize the complex. Mutagenesis of ERK2 within loop 13 suggests that Ets-1 binds the substrate-binding groove. These data suggest that ERK2 uses two weak docking interactions to specifically assemble the complex, perhaps in doing so denying Ser-26 access to the active site. Displacement of residues 1-138 of Ets-1 (EtsDelta138) from ERK2 by the peptide N-QKGKPRDLELPLSPSL-C, derived from Elk-1, suggests that Ets-1 engages the D-recruitment site (beta7-beta8 reverse turn and the alphaD-alphaE helix) of ERK2. Displacement of EtsDelta138 from ERK2 by the peptide N-AKLSFQFPS-C derived from Elk-1 shows that EtsDelta138 communicates with the F-recruitment site of ERK2 also.  相似文献   

19.
Using the specific Abl tyrosine kinase inhibitor STI 571, we purified unphosphorylated murine type IV c-Abl and measured the kinetic parameters of c-Abl tyrosine kinase activity in a solution with a peptide-based assay. Unphosphorylated c-Abl exhibited substantial peptide kinase activity with K(m) of 204 microm and V(max) of 33 pmol min(-1). Contrary to previous observations using immune complex kinase assays, we found that a transforming c-Abl mutant with a Src homology 3 domain point mutation (P131L) had significantly (about 6-fold) higher intrinsic kinase activity than wild-type c-Abl (K(m) = 91 microm, V(max) = 112 pmol min(-1)). Autophosphorylation stimulated the activity of wild-type c-Abl about 18-fold and c-Abl P131L about 3.6-fold, resulting in highly active kinases with similar catalytic rates. The autophosphorylation rate was dependent on Abl protein concentration consistent with an intermolecular reaction. A tyrosine to phenylalanine mutation (Y412F) at the c-Abl residue homologous to the c-Src catalytic domain autophosphorylation site impaired the activation of wild-type c-Abl by 90% but reduced activation of c-Abl P131L by only 45%. Mutation of a tyrosine (Tyr-245) in the linker region between the Src homology 2 and catalytic domains that is conserved among the Abl family inhibited the autophosphorylation-induced activation of wild-type c-Abl by 50%, whereas the c-Abl Y245F/Y412F double mutant was minimally activated by autophosphorylation. These results support a model where c-Abl is inhibited in part through an intramolecular Src homology 3-linker interaction and stimulated to full catalytic activity by sequential phosphorylation at Tyr-412 and Tyr-245.  相似文献   

20.
We have demonstrated previously that Cdc42 induced MLK-3 homodimerization leads to both autophosphorylation and activation of MLK-3 and postulated that autophosphorylation is an intermediate step of MLK-3 activation following its dimerization. In this report we sought to refine further the mechanism of MLK-3 activation and study the role of the putative kinase activation loop in MLK-3 activation. First we mutated the three potential phosphorylation sites in MLK-3 putative activation loop to alanine in an effort to abrogate MLK-3 autophosphorylation. Mutant T277A displayed almost no autophosphorylation activity and was nearly nonfunctional; mutant S281A, that displayed a low level of autophosphorylation, only slightly activated its downstream targets, whereas the T278A mutant, that exhibited autophosphorylation comparable to that of the wild type, was almost fully functional. Thus, these residues within the activation loop are critical for MLK-3 autophosphorylation and activation. In addition, when the Thr277 and Ser281 residues were mutated to negatively charged glutamic acid to mimic phosphorylated serine/threonine residues, the resulting mutants were fully functional, implying that these two residues may serve as the autophosphorylation sites. Interestingly, HPK1 also phosphorylated MLK-3 activation loop in vitro, and Ser281 was found to be the major phosphorylation site, indicating that HPK1 also activates MLK-3 via phosphorylation of the kinase activation loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号