首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of upper airway loading on longitudinal bone growth and various components of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis has not been fully elucidated. In the present study, the effect of chronic resistive airway loading (CAL) in a prepubescent rat model on linear bone growth and weight gain was investigated. We hypothesize that CAL induced in prepubescent rats will lead to impaired longitudinal growth due to impairment in circulating and liver GH/IGF-I parameters. The tracheae of 22-day-old rats were obstructed by tracheal banding to increase inspiratory esophageal pressure. The GH/IGF-I markers were analyzed using ELISA, RT-PCR, and Western immunoblot analysis 14 days after surgery. Animals exhibited impaired longitudinal growth as demonstrated by reduction of tibia and tail length gains by 40% (P < 0.0001) and body weight gain by 24% (P < 0.0001). No differences were seen in total body energy balance, i.e., oxygen consumption, daily food intake, or arterial blood gases. Circulating GH, IGF-I, and IGF binding protein-3 (IGFBP-3) levels were reduced by 40% (P = 0.037), 30% (P < 0.006), and 27% (P = 0.02), respectively, in the CAL group. Liver IGF-I mRNA level decreased by 20% (P < 0.0002), whereas GH receptor mRNA and protein expression were unchanged. We conclude that impaired longitudinal growth in prepubescent CAL rats is related to a decrease in GH, IGF-I, and IGFBP-3 levels.  相似文献   

2.
The growth hormone (GH)-insulin-like growth factor (IGF) axis and insulin are major anabolic effectors in promoting weight gain and linear growth. These two anabolic systems are interlinked at many levels, thus abnormalities in one of these systems effect the other causing disordered metabolic homeostasis. Insufficient portal insulinization in insulin dependent diabetes mellitus (IDDM) results in hepatic GH resistance and increased production of IGF-binding proteins-1 (IGFBP-1) and IGFBP-2. GH resistance is reflected by decreased hepatic IGF-I production. In addition, changes in other GH-dependent proteins are also observed in IDDM. Increased proteolysis of IGFBP-3 results in reduction of intact IGFBP-3. Serum ALS levels are also slightly diminished in untreated diabetic patients. Hepatic resistance to GH is, at least in part, caused by diminished GH receptors as reflected by diminished circulating GHBP levels. In addition, there is also evidence from experimental and human studies suggesting post-receptor defect(s) in GH action. As a result of these changes, circulating total and free IGF-I levels are decreased during insulinopenia. Lack of negative feed-back effect of IGF-I on GH secretion causes GH hypersecretion which increases hyperglycemia by decreasing sensitivity to insulin. GH hypersecretion in poorly controlled diabetic patients may play a role in the pathogenesis of diabetic vascular complications. Most of these abnormalities in the GH-IGF axis in diabetes are reversed by effective insulinization of the patient. Addition of IGF-I treatment to insulin in adolescents with IDDM allows correction of GH hypersecretion, improves insulin sensitivity and glycemic control, and decreases insulin requirements. The effect of IGF-I treatment on diabetic complications has yet to be seen.  相似文献   

3.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

4.
The progression to nonalcoholic steatohepatitis (NASH) from simple steatosis is associated with the mitochondrial dysfunction, enhanced oxidative stress, and inflammation. Recently, it has been reported that the prevalence of NAFLD (nonalcoholic fatty liver disease)/NASH is increased in patients with adult growth hormone deficiency (AGHD), suggesting that the deficiencies in GH and insulin-like growth factor (IGF-I) are involved in the development of NAFLD/NASH; however, the precise underlying mechanism remains to be elucidated. To clarify the mechanisms and the specific contribution of GH and IGF-I in these conditions, we examined the liver of a GH-deficient rat model, spontaneous dwarf rat (SDR) and the effect of GH and IGF-I administration. SDR showed steatosis and fibrosis in the liver in line with the phenotype observed in AGHD. Serum AST and ALT levels and triglyceride content in the liver were significantly increased in the SDR compared with the control. Intriguingly, the mitochondrial morphology in the SDR hepatocyte was impaired and the area was significantly decreased. Furthermore, oxidative stress in the SDR liver was enhanced. These changes were improved not only by GH but also by IGF-I administration, suggesting that GH-independent IGF-I action plays an essential role in the liver. In conclusion, we demonstrated that GH-deficient rat exhibits NASH and IGF-I plays an essential role to prevent the development of NASH. The improved mitochondrial function and reduced oxidative stress may contribute the effect of IGF-I in the liver.  相似文献   

5.
We investigated the impact of growth hormone (GH) alone, testosterone (T) alone, and combined GH and T on whole body protein metabolism. Twelve hypopituitary men participated in two studies. Study 1 compared the effects of GH alone with GH plus T, and study 2 compared the effects of T alone with GH plus T. IGF-I, resting energy expenditure (REE), and fat oxidation (F(ox)) and rates of whole body leucine appearance (R(a)), oxidation (L(ox)), and nonoxidative leucine disposal (NOLD) were measured. In study 1, GH treatment increased mean plasma IGF-I (P < 0.001). GH did not change leucine R(a) but reduced L(ox) (P < 0.02) and increased NOLD (P < 0.02). Addition of T resulted in an additional increase in IGF-I (P < 0.05), reduction in Lox (P < 0.002), and increase in NOLD (P < 0.002). In study 2, T alone did not alter IGF-I levels. T alone did not change leucine R(a) but reduced L(ox) (P < 0.01) and increased NOLD (P < 0.01). Addition of GH further reduced L(ox) (P < 0.05) and increased NOLD (P < 0.05). In both studies, combined treatments on REE and F(ox) were greater than either alone. In summary, GH-induced increase of circulating IGF-I is augmented by T, which does not increase IGF-I in the absence of GH. T and GH exerted independent and additive effects on protein metabolism, F(ox) and REE. The anabolic effects of T are independent of circulating IGF-I.  相似文献   

6.
The initiation of liver regeneration is regulated by endogenously produced growth factors and cytokines and is accompanied by suppression of growth hormone (GH) binding to hepatocytes. We have demonstrated some of these factors, particularly GH, which modulate acid-labile subunit (ALS) expression in vitro. Consequently, we investigated ALS hepatic mRNA and serum levels in rats for 24 h after partial hepatectomy (PHx). There was a significant suppression of ALS gene expression (approximately 50%, P < 0.005) and serum levels (approximately 30%, P < 0.02) by 12 h in PHx rats relative to controls. Relative to intact animals, hepatic mRNA and serum levels of ALS were suppressed by approximately 60% at 24 h. Similarly, hepatic GH receptor mRNA levels were significantly reduced in PHx animals. Moreover, hepatocytes isolated from PHx animals were less responsive to GH than those from controls. Overall, our results demonstrate that suppression of ALS gene expression and serum levels during liver regeneration relates to lowered hepatic GH sensitivity. Suppressed circulating ALS may alter insulin-like growth factor bioavailability and constitute a mechanism to maintain relatively normal glucoregulation after loss of liver mass.  相似文献   

7.
Exercise leads to simultaneous increases in mediators signaling apparently antagonistic functional responses such as growth factors and inflammatory mediators. The aim of the present study was to demonstrate the physiological effect of IL-6 on circulating components of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis. Twelve men (ages 26 +/- 2 yr) were divided into two groups (n = 6 in each group), receiving either albumin or recombinant human (rh) IL-6 infusion. IL-6 was infused via an antecubital vein, and a contralateral antecubital vein was used for blood sampling. The IL-6 dose was chosen to reach plasma levels of IL-6 characteristic of intense exercise (5 microg/h, for 3 h, resulting in plasma levels of 100 pg/ml). Blood samples for GH, GH binding protein, IGF-I, and IGF binding protein (IGFBP)-1 and -3 were collected at baseline, 30 min, and 1, 2, 3, 4, 5, and 8 h after the beginning of the rhIL-6 infusion. IL-6 levels increased only in the rhIL-6-infused group (P < 0.0005) and returned to baseline after the infusion was stopped. IL-6 infusion led to a significant increase in GH, peaking 1 h after the beginning of infusion (P < 0.001). A decrease in total IGF-I levels was noted only in the rhIL-6-infused group (P < 0.027). An initial decrease in IGFBP-1 levels was noted in both groups during infusion (P < 0.03). Following the initial decrease, there was a significant increase in IGFBP-1 levels only in the IL-6-infused participants, peaking at 2 after the infusion cessation (P < 0.001). IL-6 infusion had no effect on GH binding protein, IGFBP-3, and acid-labile subunit levels. rhIL-6 levels similar to the levels found after strenuous exercise induced a typical exercise-associated GH-->IGF-I axis response (increase GH, decreased IGF-I, and elevated IGFBP-1). The results suggest that IL-6 plays a role in the GH-->IGF-I response to intense exercise.  相似文献   

8.
9.
ABSTRACT

The recombinant human growth hormone (GH) has been used for the treatment of growth hormone deficiency (GHD) and diverse short stature state, and its physiological and therapeutic effects are well documented. However, since the effect of GH treatment on metabolic disorders has not been well characterized, we injected GH to Western diet-fed low-density lipoprotein receptor-deficient (Ldlr ?/?) mice to understand the exact effect of GH on metabolic diseases including atherosclerosis, hepatic steatosis, and obesity. Exogenous GH treatment increased plasma IGF-1 concentration and decreased body weight without affecting serum lipid profiles. GH treatment changed neither atherosclerotic lesion size nor collagen and smooth muscle cells accumulation in the lesion. GH treatment reduced macrophage accumulation in adipose tissue. Importantly, GH treatment attenuated hepatic steatosis and inflammation. The hepatic expression IL-1β mRNA were decreased by GH treatment. The mRNA and protein levels of CD36 were markedly decreased in GH treated mice without significant changes in other molecules related to lipid metabolism. Therefore, the treatment of GH treatment could attenuate hepatic steatosis and inflammation with downregulation of CD36 expression in hyperlipidemic condition.  相似文献   

10.
In this study, we administered aminoguanidine, a relatively selective inducible nitric oxide synthase (iNOS) inhibitor, to study the role of nitric oxide (NO) in LPS-induced decrease in IGF-I and IGFBP-3. Adult male Wistar rats were injected intraperitoneally with LPS (100 microg/kg), aminoguanidine (100 mg/kg), LPS plus aminoguanidine, or saline. Rats were injected at 1730 and 0830 the next day and killed 4 h after the last injection. LPS administration induced an increase in serum concentrations of nitrite/nitrate (P < 0.01) and a decrease in serum concentrations of growth hormone (GH; P < 0.05) and IGF-I (P < 0.01) as well as in liver IGF-I mRNA levels (P < 0.05). The LPS-induced decrease in serum concentrations of IGF-I and liver IGF-I gene expression seems to be secondary to iNOS activation, since aminoguanidine administration prevented the effect of LPS on circulating IGF-I and its gene expression in the liver. In contrast, LPS-induced decrease in serum GH was not prevented by aminoguanidine administration. LPS injection decreased IGFBP-3 circulating levels (P < 0.05) and its hepatic gene expression (P < 0.01), but endotoxin did not modify the serum IGFBP-3 proteolysis rate. Aminoguanidine administration blocked the inhibitory effect of LPS on both IGFBP-3 serum levels and its hepatic mRNA levels. When aminoguanidine was administered alone, IGFBP-3 serum levels were increased (P < 0.05), whereas its hepatic mRNA levels were decreased. This contrast can be explained by the decrease (P < 0.05) in serum proteolysis of this binding protein caused by aminoguanidine. These data suggest that iNOS plays an important role in LPS-induced decrease in circulating IGF-I and IGFBP-3 by reducing IGF-I and IGFBP-3 gene expression in the liver.  相似文献   

11.
BACKGROUND: In a recently described patient with acid-labile subunit (ALS) deficiency, the inability to form ternary complexes resulted in a marked reduction in circulating total insulin-like growth factor (IGF)-I, whereas skeletal growth was only marginally affected. To further study the role of circulating versus locally produced IGF-I in skeletal growth in this patient, we now describe in detail growth changes and their relationship with several components of the circulating IGF system. DESIGN AND METHODS: We followed growth and development up to the final height in a patient with complete ALS deficiency and determined both spontaneous and growth hormone (GH)-stimulated changes in the IGF system, including measurements of total, free and bioactive IGF-I, total IGF-II and insulin-like growth factor binding protein (IGFBP)-1, IGFBP-2 and IGFBP-3. RESULTS: The patient had a delayed growth and pubertal onset. Six months of GH treatment had no effect on growth. At the age of 19.3 years, he spontaneously completed puberty and had a normal growth spurt for a late adolescent (peak height velocity of 8.4 cm/year). A normal final height was attained at 21.3 years (167.5 cm; -0.78 SDS). During as well as after puberty, basal levels of total, free and bioactive IGF-I were low, as were total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3. GH treatment for 6 months normalized free IGF-I and increased bioactive IGF-I, but had no effect on growth velocity. CONCLUSIONS: This case story shows that in the presence of complete ALS deficiency, a height within normal limits can be obtained despite low levels of all forms of circulating IGF-I. Furthermore, the patient presented a delayed but normal growth spurt without any marked increment of circulating IGF-I.  相似文献   

12.
During critical illness glutamine deficiency may develop. Glutamine supplementation can restore plasma concentration to normal, but the effect on glutamine metabolism is unknown. The use of growth hormone (GH) and insulin-like growth factor I (IGF-I) to prevent protein catabolism in these patients may exacerbate the glutamine deficiency. We have investigated, in critically ill patients, the effects of 72 h of treatment with standard parenteral nutrition (TPN; n = 6), TPN supplemented with glutamine (TPNGLN; 0.4 g x kg(-1) x day(-1), n = 6), or TPNGLN with combined GH (0.2 IU. kg(-1). day(-1)) and IGF-I (160 microg x kg (-1) x day(-1)) (TPNGLN+GH/IGF-I; n = 5) on glutamine metabolism using [2-(15)N]glutamine. In patients receiving TPNGLN and TPNGLN+GH/IGF-I, plasma glutamine concentration was increased (338 +/- 22 vs. 461 +/- 24 micromol/l, P < 0.001, and 307 +/- 65 vs. 524 +/- 71 micromol/l, P < 0.05, respectively) and glutamine uptake was increased (5.2 +/- 0.5 vs. 7.4 +/- 0.7 micromol x kg(-1) x min(-1), P < 0.05 and 5.2 +/- 1.1 vs. 7.6 +/- 0.8 micromol x kg(-1) x min(-1), P < 0.05). Glutamine production and metabolic clearance rates were not altered by the three treatments. These results suggest that there is an increased requirement for glutamine in critically ill patients. Combined GH/IGF-I treatment with TPNGLN did not have adverse effects on glutamine metabolism.  相似文献   

13.
Circulating GH, IGF-I, IGFBP-3, and sex steroid concentrations decrease with age. GH or sex steroid treatment increases IGFBP-3, but little is known regarding the effects of these hormones on other IGFBPs. We assessed the effects of 26 wk of administration of GH, sex steroids, or GH + sex steroids on AM levels of IGF-I, IGFBPs 1-5, insulin, glucose, and osteocalcin and 2-h urinary excretion of deoxypyridinolline (DPD) cross-links in 53 women and 71 men aged 65-88 yr. Before treatment, in women and men, IGF-I was directly related to IGFBP-3 (P < 0.001 and P < 0.0001) and IGFBP-1 to IGFBP-2 (P = 0.0001). In women, IGFBP-1 was inversely related to insulin (P < 0.0005) and glucose (P < 0.005) and IGFBP-4 to osteocalcin (P < 0.01). IGFBP-4 and IGFBP-5 were not significantly related to DPD cross-links. GH and/or sex steroid increased IGF-I levels in both sexes, with higher concentrations in men (P < 0.001). In women, the IGF-I increment after GH was attenuated by hormone replacement therapy (HRT) coadministration (P < 0.05). Hormone administration also increased IGFBP-3. IGFBP-1 was unaffected by GH + sex steroids, whereas GH decreased IGFBP-2 by 15% in men (P < 0.05). Hormone administration did not change IGFBP-4, whereas in men IGFBP-5 increased by 20% after GH (P < 0.05) and 56% after GH + testosterone (P = 0.0003). These data demonstrate sexually dimorphic IGFBP responses to GH. Additionally, HRT attenuated or prevented GH-mediated increases in IGF-I and IGFBP-3. Whether GH and/or sex steroid administration alters local tissue production of IGFBPs and whether the latter influence autocrine or paracrine actions of IGF-I remain to be determined.  相似文献   

14.
The aim of this study was to compare circulating levels of growth hormone (GH), IGF-I, and IGF-binding protein (IGFBP)-1 and IGFBP-3 in response to a long-duration endurance exercise in trained vs. sedentary middle-aged males and to determine whether a relationship with glucose homeostasis exists. Seven trained men (Tr) were compared with seven age-matched sedentary men (Sed) during two trials of 60 min of cycling exercise performed below (-VT) and above (+VT) the ventilatory threshold. Insulin sensitivity (S(I)) was higher in Tr than in Sed (P < 0.001). Basal GH, IGF-I, and IGFBP-1 and -3 were higher in Tr (P < 0.05). During +VT, Tr had a threefold higher GH response, whereas their blood glucose level was better maintained (P < 0.05). Basal IGFBP-1 was correlated with S(I) (P < 0.01). These data indicate that endurance training in middle-aged men increased the activity of the GH/IGF-I system and improved glucoregulation both at rest and during high-intensity endurance exercise.  相似文献   

15.
Regulation of the production of insulin-like growth factor (IGF)-I, IGF-II, IGF binding proteins (IGFBPs), and their related proteins by various hormones was investigated in primary cultures of rat liver parenchymal and nonparenchymal cells.

Freshly isolated parenchymal cells contained mRNAs of IGF-I, IGF-II, IGFBP-1, IGFBP-4, growth hormone (GH) receptor, and the acid-labile subunit (ALS), which forms a ternary complex with IGF-I and IGFBP-3; however, parenchymal cells did not express the IGFBP-3 gene. In contrast, nonparenchymal cells contained IGFBP-3 mRNA exclusively, as we reported previously [Takenaka et al. Agric. Biol. Chem., 55, 1191–1193 (1991)]. Cultured rat parenchymal cells produced IGF-I, IGFBP-1, and IGFBP-4 prominently. In these cells, secretion of IGF-I and the content of IGF-I mRNA was greatly increased in the presence of GH in the medium. Insulin also increased the production of IGF-I. Secretion of IGFBP-l into the medium was enhanced by treatment with glucagon, dibutyrylcyclic AMP (Bu2cAMP), and dexamethasone (Dex) and these enhancements with glucagon and Dex reflected the increase in its mRNA content. Insulin depressed the secretion of IGFBP-l. The content of IGFBP-4 in the parenchymal cells was increased by insulin, Bu2cAMP, and triiodothyronine (T3), thereby enhancing the production of IGFBP-4 and secretion into the medium. Cultured liver nonparenchymal cells of rats produced IGFBP-1, IGFBP-3, and IGFBP-4. Secretion of IGFBP-l was increased by Bu2cAMP in the medium, that of IGFBP-3 by IGF-I, and that of IGFBP-4 by both IGF-I and Bu2cAMP. Regulation of the production of IGFBP-3 by IGF-I was demonstrated in these investigations.

These results suggest that GH increases production of IGF-I in the parenchymal cells and this IGF-I, in turn, increases the production of IGFBP-3 in nonparenchymal cells. As we found GH also increases ALS production in parenchymal cells, by these mechanisms, GH increases the formation of the ternary complex of IGF-I, IGFBP-3, and ALS. This study clearly demonstrates the interrelationship between parenchymal and nonparenchymal cells in the production of IGF-I and IGFBPs in the liver.  相似文献   

16.
Growth hormone (GH), insulin-like growth factor I (IGF-I), progesterone (P4) and 17beta-estradiol (17-E2) concentrations have been studied in 84 mammary tumours (44 dysplasias and benign tumours and 40 malignant neoplasias) from 33 female dogs. Thirteen normal mammary glands from 80 healthy female dogs were also analysed as controls. GH concentrations were determined in mammary homogenates by radio-immunoassay. IGF-I, P4 and 17-E2 tissue levels were determined by enzyme-immunoassay (EIA) techniques. The potential correlations between GH/IGF-I concentrations and P4 and 17-E2 mammary tissue levels were investigated. Tissue GH (p<0.01) and IGF-I concentrations (p<0.01) were significantly higher in malignant tumours than in benign neoplasms. Likewise, malignant tumours were the mammary lesions that displayed the highest P4 and 17-E2 tissue levels. Strong correlations between GH/IGF-I (n=84; r=0.436; p<0.001), P4/GH (n=84; r=0.562; p<0.001) and 17-E2/IGF-I (n=84; r=0.638; p<0.001) were observed in tumoral tissue homogenates. Our study provides evidence that P4 might increase autocrine GH production which might directly stimulate local or systemic IGF-I secretion. Additionally, the IGF-I effect might be influenced by local levels of 17-E2. These results suggest that all these hormones and factors might act as local growth factors stimulating the development and/or maintenance of canine mammary tumours in an autocrine/paracrine manner.  相似文献   

17.
Growth hormone (GH) plays an important role in regulation of animal growth, metabolism and lactation[1]. Numerous studies have shown that exogenous somatotropin (ST) can increase average daily weight gain, improve feed efficiency, stimulate protein deposition and muscle growth and decrease lipid accretion rate[1]. The original somatomedin hypothesis suggested that the effect of GH on postnatal growth was mediated by insulin-like growth hormone factor 1 (IGF-I) which was thought to be deriv…  相似文献   

18.
The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 ± 35 μg/L and 62 ± 11 μg/L in the diabetic compared to the nondiabetic mice (P < .05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats.  相似文献   

19.
In this experiment, we assessed the effect of amino acid (AA) intake restriction in entire male Yorkshire pigs between 15 and 38 kg BW (restriction phase) on BW gain, body composition and plasma levels of blood urea nitrogen (BUN), cortisol, insulin-like growth factor I (IGF-I), growth hormone (GH) and leptin during the subsequent re-alimentation phase. During the restriction phase, 36 pigs were allotted to one of two dietary treatments: adequate AA intake (control) or AA-limiting diets (AA-30%). Thereafter, pigs were fed common non-limiting diets up to 110 kg BW. Throughout the experiment, pigs were scale-fed at 90% of the estimated voluntary daily digestible energy intake. At the end of the restriction phase, pigs on AA-30% had lesser BW gain (650 v. 784 g/day; P < 0.001), loin area (LA; 12.2 v. 14.2 cm2; P < 0.001), BUN (4.6 v. 6.3 mg/dl; P < 0.02), lesser plasma levels of IGF-I (440 v. 640 ng/m; P < 0.001) and cortisol (8.2 v. 19.2 μg/dl; P < 0.001), greater backfat thickness (BF; 7.56 v. 6.56 mm; P < 0.02), and greater plasma levels of leptin (2.7 v. 1.8 ng/ml; P = 0.027) and GH (3.3 v. 2.0 ng/ml; P = 0.05) than pigs on control. During the re-alimentation phase, previously restricted pigs showed full compensatory growth (CG) in terms of BW gain (1170 v. 1077 g/day; P < 0.002), whole-body protein deposition (Pd) (179 v. 163 g/day; P < 0.001) as well as physical and chemical body composition (whole-body lipid to body protein mass ratio, LB/PB; 1.14 v. 1.15; P > 0.10). Besides GH at 45 kg BW (4.2 v. 2.4 ng/ml; P = 0.066), there were no effects of previous AA intake restriction on leptin, IGF-I and BUN during the re-alimentation phase (P > 0.10). Plasma cortisol and IGF-I levels may act as an indicator of AA-induced restriction in Pd in growing pigs. Plasma BUN level does not appear as a sensitive indicator for compensatory Pd. Plasma leptin and GH levels allow for the involvement of the brain in controlling chemical body composition. Full CG was observed during the energy-dependent phase of Pd in growing pigs and might be driven by a target LB/PB, possibly mediated via plasma leptin, IGF-I and GH levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号