首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is associated with an increased risk for malignant lymphoma development. We used Bcr/Abl transformed B cells to determine the impact of aggressive lymphoma formation on systemic lipid mobilization and turnover. In wild-type mice, tumor size significantly correlated with depletion of white adipose tissues (WAT), resulting in increased serum free fatty acid (FFA) concentrations which promote B-cell proliferation in vitro. Moreover, B-cell tumor development induced hepatic lipid accumulation due to enhanced hepatic fatty acid (FA) uptake and impaired FA oxidation. Serum triglyceride, FFA, phospholipid and cholesterol levels were significantly elevated. Consistently, serum VLDL/LDL-cholesterol and apolipoprotein B levels were drastically increased. These findings suggest that B-cell tumors trigger systemic lipid mobilization from WAT to the liver and increase VLDL/LDL release from the liver to promote tumor growth. Further support for this concept stems from experiments where we used the peroxisome proliferator-activated receptor α (PPARα) agonist and lipid-lowering drug fenofibrate that significantly suppressed tumor growth independent of angiogenesis and inflammation. In addition to WAT depletion, fenofibrate further stimulated FFA uptake by the liver and restored hepatic FA oxidation capacity, thereby accelerating the clearance of lipids released from WAT. Furthermore, fenofibrate blocked hepatic lipid release induced by the tumors. In contrast, lipid utilization in the tumor tissue itself was not increased by fenofibrate which correlates with extremely low expression levels of PPARα in B-cells. Our data show that fenofibrate associated effects on hepatic lipid metabolism and deprivation of serum lipids are capable to suppress B-cell lymphoma growth which may direct novel treatment strategies. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   

2.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

3.
We examined in vivo a role for sterol carrier protein-2 (SCP-2) in the regulation of lipid secretion across the hepatic sinusoidal and canalicular membranes. Recombinant adenovirus Ad.rSCP2 was used to overexpress SCP-2 in livers of mice. We determined plasma, hepatic, and biliary lipid concentrations; hepatic fatty acid (FA) and cholesterol synthesis; hepatic and biliary phosphatidylcholine (PC) molecular species; and VLDL triglyceride production. In Ad.rSCP2 mice, there was marked inhibition of hepatic fatty acids and cholesterol synthesis to <62% of control mice. Hepatic triglyceride contents were decreased, while cholesterol and phospholipids concentrations were elevated in Ad.rSCP2 mice. Hepatic VLDL triglyceride production fell in Ad.rSCP2 mice to 39% of control values. As expected, biliary cholesterol, phospholipids, bile acids outputs, and biliary PC hydrophobic index were significantly increased in Ad.rSCP2 mice. These studies indicate that SCP-2 overexpression in the liver markedly inhibits lipid synthesis as well as VLDL production, and alters hepatic lipid contents. In contrast, SCP-2 increased biliary lipid secretion and the proportion of hydrophobic PC molecular species in bile. These effects suggest a key regulatory role for SCP-2 in hepatic lipid metabolism and the existence of a reciprocal relationship between the fluxes of lipids across the sinusoidal and canalicular membranes.  相似文献   

4.
High levels of expression of the ATP binding cassette transporter A1 (ABCA1) in the liver and the need to over- or underexpress hepatic ABCA1 to impact plasma HDL levels in mice suggest a major role of the liver in HDL formation and in determining circulating HDL levels. Cultured murine hepatocytes were used to examine the role of hepatic ABCA1 in mediating the lipidation of apolipoprotein A-I (apoA-I) for HDL particle formation. Exogenous apoA-I stimulated cholesterol efflux to the medium from wild-type hepatocytes, but not from ABCA1-deficient (abca1(-/-)) hepatocytes. ApoA-I induced the formation of new HDL particles and enhanced the lipidation of endogenously secreted murine apoA-I in ABCA1-expressing but not abca1(-/-) hepatocytes. ABCA1-dependent cholesterol mobilization to apoA-I increased new cholesterol synthesis, indicating depletion of the regulatory pool of hepatocyte cholesterol during HDL formation. Secretion of triacylglycerol and apoB was decreased following apoA-I incubation with ABCA1-expressing but not abca1(-/-) hepatocytes. These results support a major role for hepatocyte ABCA1 in generating a critical pool of HDL precursor particles that enhance further HDL generation and passive cholesterol mobilization in the periphery. The results also suggest that diversion of hepatocyte cholesterol into the "reverse" cholesterol transport pathway diminishes cholesterol availability for apoB-containing lipoprotein secretion by the liver.  相似文献   

5.
6.
Our laboratory has established that 2,4-dinitrophenyl-conjugated mouse IgG (DNP-MGG) can specifically suppress the anti-DNP secretion in hybridoma 35-12 and plasmacytoma MOPC-315 cells. To further study the mechanism of this suppression, the effect of DNP-MGG on anti-DNP synthesis and cell proliferation was investigated in these cell lines. Cultured tumor cells (1 × 106) were injected ip into syngeneic mice. These mice were then given either 1 mg MGG or 1 mg DNP-MGG. At different days after injection, tumor cells obtained from these mice were assayed for anti-DNP secretion, anti-DNP synthesis, cell proliferation, and tumor cell size. When the anti-DNP secretion was suppressed by DNP-MGG, the intracellular synthesis of anti-DNP, demonstrated by [3H]leucine incorporation into DNP-binding activity, was also suppressed. Simultaneous assays of [3H]thymidine incorporation demonstrated that proliferation was also suppressed. Tumor cells injected ip into mice normally become small nonsecreting cells and later return to preinjection size and secrete antibody. Those cells whose antibody synthesis and proliferation were suppressed by DNP-MGG remained smaller.  相似文献   

7.
Studies with tumor necrosis factor p55 receptor- and interleukin-6 (IL-6)-deficient mice have shown that IL-6 is required for hepatocyte proliferation and reconstitution of the liver mass after partial hepatectomy. The biological activities of IL-6 are potentiated when this cytokine binds soluble forms of its specific receptor subunit (sIL-6R) and the resulting complex interacts with the transmembrane signaling chain gp130. We show here that double transgenic mice expressing high levels of both human IL-6 and sIL-6R under the control of liver-specific promoters spontaneously develop nodules of hepatocellular hyperplasia around periportal spaces and present signs of sustained hepatocyte proliferation. The resulting picture is identical to that of human nodular regenerative hyperplasia, a condition frequently associated with immunological and myeloproliferative disorders. In high expressors, hyperplastic lesions progress with time into discrete liver adenomas. These data strongly suggest that the IL-6/sIL-6R complex is both a primary stimulus to hepatocyte proliferation and a pathogenic factor of hepatocellular transformation.  相似文献   

8.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

9.
The scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed. Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption.  相似文献   

10.
11.
12.
Restoration of gallstone susceptibility by leptin in C57BL/6J ob/ob mice   总被引:5,自引:0,他引:5  
The absence of leptin due to the ob mutation leads to obesity and confers resistance to diet-induced cholesterol gallstone formation in otherwise susceptible C57BL/6J mice. To investigate contributions of obesity and leptin to gallstone susceptibility, C57BL/6J ob/ob mice were treated daily with i.p. saline or recombinant murine leptin at low (1 microgram/g bw) or high (10 microgram/g bw) doses and were pair-fed a lithogenic diet (15% dairy fat, 1.25% cholesterol, 0.5% cholic acid). Weight loss in ob/ob mice increased in proportion to leptin dose, indicating that the lithogenic diet did not impair leptin sensitivity. In a dose-dependent manner, leptin promoted cholesterol crystallization and gallstone formation, which did not occur in saline-treated mice. Notwithstanding, leptin decreased biliary lipid secretion rates without enriching cholesterol in bile. Leptin did not affect bile salt hydrophobicity, but did increase the biliary content of the most abundant molecular species of phosphatidylcholine, 16:0-18:2. Treatment with leptin down-regulated 3-hydroxy-3-methylglutaryl CoA reductase and prevented cholesterol from accumulating in liver. Consistent with increased hepatic clearance, leptin decreased plasma HDL cholesterol concentrations. This was accommodated in liver without up-regulation of cholesterol 7alpha-hydroxylase or Acat. These data suggest that despite the lithogenic diet, endogenous sources constitute a significant proportion of biliary cholesterol during leptin-induced weight loss. Kinetic factors related to cholesterol nucleation, gallbladder contractility, or mucin secretion may have accounted for leptin-induced gallstone formation.  相似文献   

13.
The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21cip1 protein expression in primary mouse hepatocytes. Disruption of the p21cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3+/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3+/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21cip1-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.  相似文献   

14.
The escort protein SCAP transports SREBPs from ER to Golgi where the active domains are released to activate genes for fatty acid (FA) and cholesterol synthesis. Mice with conditional SCAP deficiency in liver (L-Scap-) manifest marked reductions in hepatic lipid synthesis. Here, we show that the decreased FA synthesis in liver is balanced by an equal increase in nonhepatic tissues, primarily adipose tissue. Extrahepatic synthesis of FAs preserves adipose mass, even when L-Scap- mice consume a fat-free diet. This compensatory response disappears upon fasting, implicating a role for insulin, the major hormonal activator of FA synthesis. This response is mediated by an insulin-dependent increase in adipocyte SREBP-1c and its target mRNAs. In epididymal fat of L-Scap- mice, phosphorylated Akt, Glut-4 mRNA, and glucose uptake are also increased, indicating insulin hypersensitivity. Plasma VLDL triglycerides are dramatically reduced in L-Scap- mice, underscoring the benefits of synthesizing FAs in fat rather than liver.  相似文献   

15.
Female and male rats were treated with ethinyl estradiol (5.0 mg/kg daily for 5 days). Control animals were pair fed to compensate for the reduction in food intake induced by the estrogen, or were fed ad libitum. Treatment with ethinyl estradiol reduced total cholesterol and apolipoprotein A-I concentrations in the serum of female and male animals. The concentrations of serum and hepatic triacylglycerol were depressed markedly in animals of both sexes in groups treated with ethinyl estradiol, compared to the control group fed ad libitum. Compared to the pair-fed controls, however, ethinyl estradiol had only a very minor further reduction on serum triacylglycerol concentration. In male and female rats, the synthesis and secretion of triacylglycerol by the liver was, in comparison to the pair-fed controls, stimulated by estrogen, whereas the secretion of unesterified cholesterol was unaffected by any of the treatment regimens. The synthesis and secretion of total cholesteryl esters by livers from male and female rats was increased by treatment with ethinyl estradiol. The hepatic synthesis and secretion of VLDL triacylglycerol and cholesteryl ester was stimulated by ethinyl estradiol in male and female rats, and the VLDL particle was enriched with cholesteryl ester. Treatment with the high-dose estrogen increased the secretion of apolipoprotein A-I by livers from female rats. It is suggested that the depression in the serum concentrations of cholesteryl esters and apolipoprotein A-I is the result of increased rates of hepatic and/or peripheral catabolism of these components and that the hepatic production rates were increased or unaffected in animals administered high doses of ethinyl estradiol. Since the secretion of apolipoprotein A-I by livers from male rats was unaffected by treatment with ethinyl estradiol, the response to estrogen may be sex related.  相似文献   

16.
Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by an increased energy production. Increased feces secretion by caspase-1-deficient mice suggests that lipid malabsorption possibly further reduces adipose tissue mass. In this study we investigated whether caspase-1 plays a role in triglyceride-(TG)-rich lipoprotein metabolism using caspase-1-deficient and wild-type mice. Caspase-1 deficiency reduced the postprandial TG response to an oral lipid load, whereas TG-derived fatty acid (FA) uptake by peripheral tissues was not affected, demonstrated by unaltered kinetics of [3H]TG-labeled very low-density lipoprotein (VLDL)-like emulsion particles. An oral gavage of [3H]TG-containing olive oil revealed that caspase-1 deficiency reduced TG absorption and subsequent uptake of TG-derived FA in liver, muscle, and adipose tissue. Similarly, despite an elevated hepatic TG content, caspase-1 deficiency reduced hepatic VLDL-TG production. Intestinal and hepatic gene expression analysis revealed that caspase-1 deficiency did not affect FA oxidation or FA uptake but rather reduced intracellular FA transport, thereby limiting lipid availability for the assembly and secretion of TG-rich lipoproteins. The current study reveals a novel function for caspase-1, or caspase-1-cleaved substrates, in controlling intestinal TG absorption and hepatic TG secretion.  相似文献   

17.
Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions.  相似文献   

18.
The identification of ABCA1 as a key transporter responsible for cellular lipid efflux has led to considerable interest in defining its role in cholesterol metabolism and atherosclerosis. In this study, the effect of overexpressing ABCA1 in the liver of LDLr-KO mice was investigated. Compared with LDLr-KO mice, ABCA1-Tg x LDLr-KO (ABCA1-Tg) mice had significantly increased plasma cholesterol levels, mostly because of a 2.8-fold increase in cholesterol associated with a large pool of apoB-lipoproteins. ApoB synthesis was unchanged but the catabolism of (125)I-apoB-VLDL and -LDL were significantly delayed, accounting for the 1.35-fold increase in plasma apoB levels in ABCA1-Tg mice. We also found rapid in vivo transfer of free cholesterol from HDL to apoB-lipoproteins in ABCA1-Tg mice, associated with a significant 2.7-fold increase in the LCAT-derived cholesteryl linoleate content found primarily in apoB-lipoproteins. ABCA1-Tg mice had 1.4-fold increased hepatic cholesterol concentrations, leading to a compensatory 71% decrease in de novo hepatic cholesterol synthesis, as well as enhanced biliary cholesterol, and bile acid secretion. CAV-1, CYP2b10, and ABCG1 were significantly induced in ABCA1-overexpressing livers; however, no differences were observed in the hepatic expression of CYP7alpha1, CYP27alpha1, or ABCG5/G8 between ABCA1-Tg and control mice. As expected from the pro-atherogenic plasma lipid profile, aortic atherosclerosis was increased 10-fold in ABCA1-Tg mice. In summary, hepatic overexpression of ABCA1 in LDLr-KO mice leads to: 1) expansion of the pro-atherogenic apoB-lipoprotein cholesterol pool size via enhanced transfer of HDL-cholesterol to apoB-lipoproteins and delayed catabolism of cholesterol-enriched apoB-lipoproteins; 2) increased cholesterol concentration in the liver, resulting in up-regulated hepatobiliary sterol secretion; and 3) significantly enhanced aortic atherosclerotic lesions.  相似文献   

19.

Background

Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration.

Methods

We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes.

Results

At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment.

Conclusion

IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.  相似文献   

20.
The role of non-parenchymal cells in liver growth   总被引:11,自引:0,他引:11  
The main non-parenchymal cells of the liver, Kupffer cells, sinusoidal endothelial cells and stellate cells, participate in liver growth with respect to both their own proliferation, and effects on hepatocyte proliferation. In the well-characterised paradigm of 70% partial hepatectomy, they undergo DNA synthesis and cell division 20-24h later than the hepatocyte population. They exert both positive and negative influences on hepatocyte proliferation, including provision of an extracellular matrix-bound reservoir of hepatocyte growth factor that is activated after damage; priming of hepatocytes for DNA synthesis through rapid generation of TNF-alpha and IL-6; and generation of factors at later time points that curb hepatocyte DNA synthesis (IL-1, TGF-beta) and initiate reconstruction and reformation of matrix proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号