首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study examined the effects of elevated free fatty acid (FFA) provision on the regulation of pyruvate dehydrogenase (PDH) activity and malonyl-CoA (M-CoA) content in human skeletal muscle during moderate-intensity exercise. Seven men rested for 30 min and cycled for 10 min at 40% and 10 min at 65% of maximal O(2) uptake while being infused with either Intralipid and heparin (Int) or saline (control). Muscle biopsies were taken at 0, 1 (rest-to-exercise transition), 10, and 20 min. Exercise plasma FFA were elevated (0.99 +/- 0.11 vs. 0.33 +/- 0.03 mM), and the respiratory exchange ratio was reduced during Int (0.87 +/- 0.02) vs. control (0.91 +/- 0.01). PDH activation was lower during Int at 1 min (1.33 +/- 0.19 vs. 2.07 +/- 0.14 mmol. min(-1). kg(-1) wet muscle) and throughout exercise. Muscle pyruvate was reduced during Int at rest [0.17 +/- 0.03 vs. 0.25 +/- 0.03 mmol/kg dry muscle (dm)] but increased above control during exercise. NADH was higher during Int vs. control at rest and 1 min of exercise (0.122 +/- 0.016 vs. 0.102 +/- 0.005 and 0.182 +/- 0.016 vs. 0.150 +/- 0.016 mmol/kg dm), but not at 10 and 20 min. M-CoA was lower during Int vs. control at rest and 20 min of exercise (1.12 +/- 0.22 vs. 1.43 +/- 0.17 and 1.33 +/- 0.16 vs. 1.84 +/- 0.17 micromol/kg dm). The reduced PDH activation with elevated FFA during the rest-to-exercise transition was related to higher mitochondrial NADH at rest and 1 min of exercise and lower muscle pyruvate at rest. The decreased M-CoA may have increased fat oxidation during exercise with elevated FFA by reducing carnitine palmitoyltransferase I inhibition and increasing mitochondrial FFA transport.  相似文献   

3.
Inhibition of endothelial nitric oxide (NO) synthase (eNOS) is associated with an increase in glucose uptake by the heart. We have already shown that Type I diabetes also causes a decrease in eNOS protein expression and altered NO control of both coronary vascular resistance and oxygen consumption. Therefore, we predict that the increase in plasma glucose and the reduction in eNOS during diabetes together would result in a large increase in cardiac glucose uptake. Arterial (A) and coronary sinus (C) plasma levels of glucose, free fatty acid (FFA), beta-hydroxybutyric acid (beta-HBA), and lactate were measured, and myocardial uptake was calculated before and at week 1, 2, 3, and 4 of alloxan-induced diabetes. The heart of healthy dogs consumed FFA (19.2 +/- 2.6 microeq/min) and lactate (19.7 +/- 3.4 micromol/min). Dogs in the late stage of diabetes (at week 4) had elevated arterial beta-HBA concentrations (1.6 +/- 0.7 micromol/l) that were accompanied by an increased beta-HBA uptake (0.3 +/- 0.2 micromol/min). In contrast, myocardial lactate (-4.8 +/- 3.0 micromol/min) and FFA uptake (2.5 +/- 1.9 microeq/min) were significantly reduced in diabetic animals. Despite a marked hyperglycemia (449 +/- 25 mg/dl), the heart did not take up glucose (-7.9 +/- 4.1 mg/dl). Our results indicate significant changes in the myocardial substrate utilization in dogs only in the late stage of diabetes, at a time when myocardial NO production is already decreased.  相似文献   

4.
The rate of hepatic glucose production (R(a) glucose) of rainbow trout (Oncorhynchus mykiss) was measured in vivo by continuous infusion of [6-(3)H]glucose and in vitro on isolated hepatocytes to examine the role of epinephrine (Epi) in its regulation. By elevating Epi concentration and/or blocking beta-adrenoreceptors with propranolol (Prop), our goals were to investigate the mechanism for Epi-induced hyperglycemia to determine the possible role played by basal Epi concentration in maintaining resting R(a) glucose and to assess indirect effects of Epi in the intact animal. In vivo infusion of Epi caused hyperglycemia (3.75 +/- 0.16 to 8.75 +/- 0.54 mM) and a twofold increase in R(a) glucose (6.57 +/- 0.79 to 13.30 +/- 1.78 micromol. kg(-1). min(-1), n = 7), whereas Prop infusion decreased R(a) from 7.65 +/- 0.92 to 4.10 +/- 0.56 micromol. kg(-1). min(-1) (n = 10). Isolated hepatocytes increased glucose production when treated with Epi, and this response was abolished in the presence of Prop. We conclude that Epi-induced trout hyperglycemia is entirely caused by an increase in R(a) glucose, because the decrease in the rate of glucose disappearance normally seen in mammals does not occur in trout. Basal circulating levels of Epi are involved in maintaining resting R(a) glucose. Epi stimulates in vitro glucose production in a dose-dependent manner, and its effects are mainly mediated by beta-adrenoreceptors. Isolated trout hepatocytes produce glucose at one-half the basal rate measured in vivo, even when diet, temperature, and body size are standardized, and basal circulating Epi is responsible for part of this discrepancy. The relative increase in R(a) glucose after Epi stimulation is similar in vivo and in vitro, suggesting that indirect in vivo effects of Epi, such as changes in hepatic blood flow or in other circulating hormones, do not play an important role in the regulation of glucose production in trout.  相似文献   

5.
Triacylglycerol (TAG) storage and turnover rates in the intact, beating rat heart were determined for the first time using dynamic mode (13)C- NMR spectroscopy to elucidate profound differences between hearts from diabetic rats (DR, streptozotocin treatment) and normal rats (NR). The incorporation of [2,4,6,8,10,12,14,16-(13)C(8)]palmitate into the TAG pool was monitored in isolated hearts perfused with physiological (0.5 mM palmitate, 5 mM glucose) and elevated substrate levels (1.2 mM palmitate, 11 mM glucose) characteristic of the diabetic condition. Surprisingly, although the normal hearts were enriched at a near-linear profile for >or=2 h before exponential characterization, exponential enrichment of TAG in diabetic hearts reached steady state after only 45 min. Consequently, TAG turnover rate was determined by fitting an exponential model to enrichment data rather than conventional two-point linear analysis. In the high-substrate group, both turnover rate (DR 820+/- 330, NR 190 +/-150 nmol.min(-1).g(-1) dry wt; P< 0.001) and [TAG] content (DR 78 +/-10, NR 32+/- 4 micromol/g dry wt; P< 0.001) were greater in the diabetic group. At lower substrate concentrations, turnover was greater in diabetics (DR 530+/-300, NR 160+/- 30; P<0.05). However, this could not be explained by simple mass action, because [TAG] content was similar between groups [DR 34+/- 7, NR 39+/- 9 micromol/g dry wt; not significant (NS)]. Consistent with exponential enrichment data, (13)C fractional enrichment of TAG was lower in diabetics (low- substrate groups: DR 4+/-1%, NR 10+/- 4%, P<0.05; high-substrate groups: DR 8+/- 3%, NR 14+/- 9%, NS), thereby supporting earlier speculation that TAG is compartmentalized in the diabetic heart.  相似文献   

6.
One of the strategies to prevent insulin resistance is to reduce circulating free fatty acids (FFA). The aim of this study is to assess the effect of an oral lactulose load on fatty acid metabolism in overweight subjects. Eight overweight subjects received a primed constant intravenous infusion of [1-(13)C]acetate and of [1,1,2,3,3-(2)H(5)]glycerol for 9 h. After 3 h of tracer infusion, patients ingested 30 g lactulose, or saline solution. Arterialized blood samples were collected every 20 min. Basal plasma concentrations of acetate were similar before and between oral treatments as well as glycerol and FFA concentrations. Plasma acetate turnover was 11.4 +/- 2.4 vs. 10.7 +/- 1.4 micromol.kg(-1).min(-1) [not significant (NS)], and plasma glycerol turnover was 3.8 +/- 0.4 vs. 4.8 +/- 1.9 micromol.kg(-1).min(-1) (NS). After lactulose ingestion, acetate concentration increased twofold and then decreased to baseline. Acetate turnover rate increased to 15.5 +/- 2.2 micromol.kg(-1).min(-1) after lactulose treatment, whereas it was unchanged after saline treatment (10.3 +/- 2.2 micromol.kg(-1).min(-1), P < or = 0.0001). In contrast, FFA concentrations decreased significantly after lactulose ingestion and then increased slowly. Glycerol turnover decreased after lactulose ingestion compared with saline, 2.8 +/- 0.4 vs. 3.5 +/- 0.3 micromol.kg(-1).min(-1) (P < or = 0.05). A significant negative correlation was found between glycerol and acetate turnover after lactulose treatments (r = -0.78, P < or = 0.02). These results showed in overweight subjects a short-term decrease in FFA level and glycerol turnover after lactulose ingestion related to a decrease of lipolysis in close relationship with an increase of acetate production.  相似文献   

7.
Dominant-negative thyroid hormone receptors (TRs) show elevated expression relative to ligand-binding TRs during cardiac hypertrophy. We tested the hypothesis that overexpression of a dominant-negative TR alters cardiac metabolism and contractile efficiency (CE). We used mice expressing the cardioselective dominant-negative TRbeta(1) mutation Delta337T. Isolated working Delta337T hearts and nontransgenic control (Con) hearts were perfused with (13)C-labeled free fatty acids (FFA), acetoacetate (ACAC), lactate, and glucose at physiological concentrations for 30 min. (13)C NMR spectroscopy and isotopomer analyses were used to determine substrate flux and fractional contributions (Fc) of acetyl-CoA to the citric acid cycle (CAC). Delta337T hearts exhibited rate depression but higher developed pressure and CE, defined as work per oxygen consumption (MVo(2)). Unlabeled substrate Fc from endogenous sources was higher in Delta337T, but ACAC Fc was lower. Fluxes through CAC, lactate, ACAC, and FFA were reduced in Delta337T. CE and Fc differences were reversed by pacing Delta337T to Con rates, accompanied by an increase in FFA Fc. Delta337T hearts lacked the ability to increase MVo(2). Decreases in protein expression for glucose transporter-4 and hexokinase-2 and increases in pyruvate dehydrogenase kinase-2 and -4 suggest that these hearts are unable to increase carbohydrate oxidation in response to stress. These data show that Delta337T alters the metabolic phenotype in murine heart by reducing substrate flux for multiple pathways. Some of these changes are heart rate dependent, indicating that the substrate shift may represent an accommodation to altered contractile protein kinetics, which can be disrupted by pacing stress.  相似文献   

8.
To clarify whether serum free fatty acid (FFA) is an inhibitor of extrathyroidal conversion (IEC) of thyroxine (T4) to thyronine (T3), we measured the concentration of FFA, IEC activity and thyroid hormones in normal subjects, acute ketotic children and children with low T3 syndrome due to nonthyroidal illness (NTI). Iodothyronine (I) 5'-deiodinase activity was assayed with reverse triiodothyronine (rT3) as substrate and liberated 125I-was measured. The IEC was determined by the inhibition of I 5'-deiodination by ether extract of sera or standard oleate solution. IEC values were represented as mM oleate. The serum concentration of FFA was 0.470 +/- 0.117 (SD) mM in 11 normal subjects, and it was significantly higher (1.242 +/- 0.248 mM; P < 0.01) in 10 acute ketotic children and in 7 samples from 6 NTI children (0.904 +/- 0.530 mM; P < 0.05). In contrast, there was no difference in IEC among three groups (normal subject, 0.451 +/- 0.069 mM; acute ketosis, 0.437 +/- 0.040 mM; NTI, 0.465 +/- 0.224 mM). No correlations were found between IEC activity and the serum FFA concentration or thyroid hormones in 28 samples from three groups. The sequential changes in serum thyroid hormones, FFA and IEC in 3 of 6 NTI children revealed no consistent relationship. Furthermore, one NTI child had significantly high IEC (> 1.000 mM) but its serum FFA (1.182 mM) was below the mean value for the acute ketotic group. These results indicate that 1) many NTI patients may bear no relation to IEC and 2) IEC may not be caused by serum FFA only but includes several factors.  相似文献   

9.
We used beta-adrenergic receptor stimulation and blockade as a tool to study substrate metabolism during exercise. Eight moderately trained subjects cycled for 60 min at 45% of VO(2 peak) 1) during a control trial (CON); 2) while epinephrine was intravenously infused at 0.015 microg. kg(-1) x min(-1) (beta-STIM); 3) after ingesting 80 mg of propranolol (beta-BLOCK); and 4) combining beta-BLOCK with intravenous infusion of Intralipid-heparin to restore plasma fatty acid (FFA) levels (beta-BLOCK+LIPID). beta-BLOCK suppressed lipolysis (i.e., glycerol rate of appearance) and fat oxidation while elevating carbohydrate oxidation above CON (135 +/- 11 vs. 113 +/- 10 micromol x kg(-1) x min(-1); P < 0.05) primarily by increasing rate of disappearance (R(d)) of glucose (36 +/- 2 vs. 22 +/- 2 micromol x kg(-1) x min(-1); P < 0.05). Plasma FFA restoration (beta-BLOCK+LIPID) attenuated the increase in R(d) glucose by more than one-half (28 +/- 3 micromol x kg(-1) x min(-1); P < 0.05), suggesting that part of the compensatory increase in muscle glucose uptake is due to reduced energy from fatty acids. On the other hand, beta-STIM markedly increased glycogen oxidation and reduced glucose clearance and fat oxidation despite elevating plasma FFA. Therefore, reduced plasma FFA availability with beta-BLOCK increased R(d) glucose, whereas beta-STIM increased glycogen oxidation, which reduced fat oxidation and glucose clearance. In summary, compared with control exercise at 45% VO(2 peak) (CON), both beta-BLOCK and beta-STIM reduced fat and increased carbohydrate oxidation, albeit through different mechanisms.  相似文献   

10.
We studied the effect of an acute 4-h period of hyperinsulinemia (H) on net utilization rates (AAUR(net)) of 21 amino acids (AA) in 17 studies performed in 13 late-gestation fetal sheep by use of a novel fetal hyperinsulinemic-euglycemic-euaminoacidemic clamp. During H [84 +/- 12 (SE) microU/ml H, 15 +/- 2 microU/ml control (C), P < 0. 00001], euglycemia was maintained by glucose clamp (19 +/- 0.05 micromol/ml H, 1.19 +/- 0.04 micromol/ml C), and euaminoacidemia (mean 4.1 +/- 3.3% increase for all amino acid concentrations [AA], nonsignificantly different from zero) was maintained with a mixed amino acid solution adjusted to keep lysine concentration constant and other [AA] near C values. H produced a 63.7% increase in AAUR(net) (3.29 +/- 0.66 micromol. min(-1). kg(-1) H, 2.01 +/- 0.55 micromol. min(-1). kg(-1) C, P < 0.001), accounting for a 60.1% increase in fetal nitrogen uptake rate (2,064 +/- 108 mg. day(-1). kg(-1) H, 1,289 +/- 73 mg. day(-1). kg(-1) C, P < 0.001). Mean AA clearance rate (AAUR(net)/[AA]) increased by 64.5 +/- 18.9% (P < 0. 001). Thus acute physiological H increases net amino acid and nitrogen utilization rates in the ovine fetus independent of plasma glucose and [AA].  相似文献   

11.
Acute increases of the key counterregulatory hormone epinephrine can be modified by a number of physiological and pathological conditions in type 1 diabetic patients (T1DM). However, it is undecided whether the physiological effects of epinephrine are also reduced in T1DM. Therefore, the aim of this study was to determine whether target organ (liver, muscle, adipose tissue, pancreas, cardiovascular) responses to epinephrine differ between healthy subjects and T1DM patients. Thirty-four age- and weight-matched T1DM (n = 17) and healthy subjects (n = 17) underwent two randomized, single-blind, 2-h hyperinsulinemic euglycemic clamp studies with (Epi) and without epinephrine infusion. Muscle biopsy was performed at the end of each study. Epinephrine levels during Epi were similar in all groups (4,039 +/- 384 pmol/l). Glucose (5.3 +/- 0.06 mmol/l) and insulin levels (462 +/- 18 pmol/l) were also similar in all groups during the glucose clamps. Glucagon responses to Epi were absent in T1DM and significantly reduced compared with healthy subjects. Endogenous glucose production during the final 30 min was significantly greater during Epi in healthy subjects compared with T1DM (8.4 +/- 1.3 vs. 4.4 +/- 0.6 micromol.kg(-1).min(-1), P = 0.041). Glucose uptake showed almost a twofold greater decrease with Epi in healthy subjects vs. T1DM (Delta31 +/- 2 vs. Delta17 +/- 2 nmol.kg(-1).min(-1), respectively, P = 0.026). Glycerol, beta-hydroxybutyrate, and nonesterified fatty acid (NEFA) all increased significantly more in T1DM compared with healthy subjects. Increases in systolic blood pressure were greater in healthy subjects, but reductions of diastolic blood pressure were greater in T1DM patients with Epi. Reduction of glycogen synthase was significantly greater during epinephrine infusion in T1DM vs. healthy subjects. In summary, despite equivalent epinephrine, insulin, and glucose levels, changes in glucose flux, glucagon, and cardiovascular responses were greater in healthy subjects compared with T1DM. However, T1DM patients had greater lipolytic responses (glycerol and NEFA) during Epi. Thus we conclude that there is a spectrum of significant in vivo physiological differences of epinephrine action at the liver, muscle, adipose tissue, pancreas, and cardiovascular system between T1DM and healthy subjects.  相似文献   

12.
To determine if prolonged fasting affects substrate utilization and endurance time, seven trained men exercised to exhaustion on a cycle ergometer at 50% maximum oxygen consumption (VO2max) in an overnight-fasted [postabsorptive (PA)] state and after a 36-h fast (F). Fasting produced significant elevations in the resting concentrations of blood free fatty acids (FFA; 1.16 +/- 0.05 vs. 0.56 +/- 0.06 mM, F vs. PA, respectively, a 107% increase), beta-hydroxybutyrate (beta-OH, 2.06 +/- 0.66 vs. 0.15 +/- 0.06 mM, a 1,270% increase), and glycerol (0.12 +/- 0.03 vs. 0.04 +/- 0.01 mM, a 200% increase), with a significant decline in glucose (79.79 +/- 2.12 vs. 98.88 +/- 3.11 mg/dl, a 19% decrease). Exercise in the F trial increased FFA, decreased glucose, and significantly elevated beta-OH and glycerol over the PA trial. There was no difference in blood glucose concentration between trials at exhaustion. However, F produced a significant decrement in exercise endurance time compared with the PA trial (88.9 +/- 18.3 vs. 144.4 +/- 22.6 min, F vs. PA, a 38% decrease). Based on the respiratory exchange ratio, fasting led to a greater utilization of lipids during rest and exercise. It was concluded that 1) a 36-h fast significantly altered substrate utilization at rest and throughout exercise to exhaustion, 2) glucose levels do not appear to be the single determinant of time to exhaustion in submaximal exercise, and 3) despite the apparent sparing of carbohydrate utilization with the 36-h fast, endurance performance was significantly decreased.  相似文献   

13.
Free fatty acids (FFA) have been shown to inhibit insulin suppression of endogenous glucose production (EGP). To determine whether this is the result of stimulation by FFA of gluconeogenesis (GNG) or glycogenolysis (GL) or a combination of both, we have determined rates of GNG and GL (with (2)H(2)O) and EGP in 16 healthy nondiabetic volunteers (11 males, 5 females) during euglycemic-hyperinsulinemic (~450 pM) clamping performed either with or without simultaneous intravenous infusion of lipid plus heparin. During insulin infusion, FFA decreased from 571 to 30 micromol/l (P < 0.001), EGP from 15.7 to 2.0 micromol x kg(-1) x min(-1) (P < 0.01), GNG from 8.2 to 3.7 micromol x kg(-1). min(-1) (P < 0.05), and GL from 7.4 to -1.7 micromol x kg(-1). min(-1) (P < 0.02). During insulin plus lipid/heparin infusion, FFA increased from 499 to 1,247 micromol/l (P < 0.001). EGP decreased 64% less than during insulin alone (-5.1 +/- 0.7 vs. -13.7 +/- 3.4 micromol x kg(-1). min(-1)). The decrease in GNG was not significantly different from the decrease of GNG during insulin alone (-2.6 vs. -4.5 micromol x kg(-1). min(-1), not significant). In contrast, GL decreased 66% less than during insulin alone (-3.1 vs. -9.2 micromol x kg(-1). min(-1), P < 0.05). We conclude that insulin suppressed EGP by inhibiting GL more than GNG and that elevated plasma FFA levels attenuated the suppression of EGP by interfering with insulin suppression of GL.  相似文献   

14.
After administration of enriched [1-13C]glucose, the rate of 13C label incorporation into glutamate C4, C3, and C2, glutamine C4, C3, and C2, and aspartate C2 and C3 was simultaneously measured in six normal subjects by 13C NMR at 4 Tesla in 45-ml volumes encompassing the visual cortex. The resulting eight time courses were simultaneously fitted to a mathematical model. The rate of (neuronal) tricarboxylic acid cycle flux (V(PDH)), 0.57 +/- 0.06 micromol. g(-1). min(-1), was comparable to the exchange rate between (mitochondrial) 2-oxoglutarate and (cytosolic) glutamate (Vx), 0.57 +/- 0.19 micromol. g(-1). min(-1)), which may reflect to a large extent malate-aspartate shuttle activity. At rest, oxidative glucose consumption [CMR(Glc(ox))] was 0.41 +/- 0.03 miccromol. g(-1). min(-1), and (glial) pyruvate carboxylation (VPC) was 0.09 +/- 0.02 micromol. g(-1). min(-1). The flux through glutamine synthetase (Vsyn) was 0.26 +/- 0.06 micromol. g(-1). min(-1). A fraction of Vsyn was attributed to be from (neuronal) glutamate, and the corresponding rate of apparent glutamatergic neurotransmission (VNT) was 0.17 +/- 0.05 micromol. g(-1). min(-1). The ratio [VNT/CMR(Glcox)] was 0.41 +/- 0.14 and thus clearly different from a 1:1 stoichiometry, consistent with a significant fraction (approximately 90%) of ATP generated in astrocytes being oxidative. The study underlines the importance of assumptions made in modeling 13C labeling data in brain.  相似文献   

15.
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.  相似文献   

16.
We examined the effects of increased glucose availability on glucose kinetics and substrate utilization in horses during exercise. Six conditioned horses ran on a treadmill for 90 min at 34 +/- 1% of maximum oxygen uptake. In one trial [glucose (Glu)], glucose was infused at a mean rate of 34.9 +/- 1.1 micromol. kg(-1). min(-1), whereas in the other trial [control (Con)] an equivalent volume of isotonic saline was infused. Plasma glucose increased during exercise in Glu (90 min: 8.3 +/- 1.7 mM) but was largely unchanged in Con (90 min: 5.1 +/- 0.4 mM). In Con, hepatic glucose production (HGP) increased during exercise, reaching a peak of 38.6 +/- 2.7 micromol. kg(-1). min(-1) after 90 min. Glucose infusion partially suppressed (P < 0.05) the rise in HGP (peak value 25.8 +/- 3.3 micromol. kg(-1). min(-1)). In Con, glucose rate of disappearance (R(d)) rose to a peak of 40.4 +/- 2.9 micromol. kg(-1). min(-1) after 90 min; in Glu, augmented glucose utilization was reflected by values for glucose R(d) that were twofold higher (P < 0.001) than in Con between 30 and 90 min. Total carbohydrate oxidation was higher (P < 0.05) in Glu (187.5 +/- 8.5 micromol. kg(-1). min(-1)) than in Con (159.2 +/- 7.3 micromol. kg(-1).min(-1)), but muscle glycogen utilization was similar between trials. We conclude that an increase in glucose availability in horses during low-intensity exercise 1) only partially suppresses HGP, 2) attenuates the decrease in carbohydrate oxidation during such exercise, but 3) does not affect muscle glycogen utilization.  相似文献   

17.
The secretion of growth hormone (GH) increases acutely during exercise, but whether this is associated with the concomitant alterations in substrate metabolism has not previously been studied. We examined the effects of acute GH administration on palmitate, glucose, and protein metabolism before, during, and after 45 min of moderate-intensity aerobic exercise in eight GH-deficient men (mean age = 40.8 +/- 2.9 yr) on two occasions, with (+GH; 0.4 IU GH) and without GH administered (-GH). A group of healthy controls (n = 8, mean age = 40.4 +/- 4.2 yr) were studied without GH. The GH replacement during exercise on the +GH study mimicked the endogenous GH profile seen in healthy controls. No significant difference in resting free fatty acid (FFA) flux was found between study days, but during exercise a greater FFA flux was found when GH was administered (211 +/- 26 vs. 168 +/- 28 micromol/min, P < 0.05) and remained elevated throughout recovery (P < 0.05). With GH administered, the exercise FFA flux was not significantly different from that observed in control subjects (188 +/- 14 micromol/min), but the recovery flux was greater on the +GH day than in the controls (169 +/- 17 vs. 119 +/- 11 micromol/min, respectively, P < 0.01). A significant time effect (P < 0.01) for glucose rate of appearance from rest to exercise and recovery occurred in the GH-deficient adults and the controls, whereas there were no differences in glucose rate of disappearance. No significant effect across time was found for protein muscle balance. In conclusion, 1) acute exposure to GH during exercise stimulates the FFA release and turnover in GH-deficient adults, 2) GH does not significantly impact glucose or protein metabolism during exercise, and 3) the exercise-induced secretion of GH plays a significant role in the regulation of fatty acid metabolism.  相似文献   

18.
Antecedent hypoglycemia leads to impaired counterregulation and hypoglycemic unawareness. To ascertain whether antecedent portal vein hypoglycemia impairs portal vein glucose sensing, thereby inducing counterregulatory failure, we compared the effects of antecedent hypoglycemia, with and without normalization of portal vein glycemia, upon the counterregulatory response to subsequent hypoglycemia. Male Wistar rats were chronically cannulated in the carotid artery (sampling), jugular vein (glucose and insulin infusion), and mesenteric vein (glucose infusion). On day 1, the following three distinct antecedent protocols were employed: 1) HYPO-HYPO: systemic hypoglycemia (2.52 +/- 0.11 mM); 2) HYPO-EUG: systemic hypoglycemia (2.70 +/- 0.03 mM) with normalization of portal vein glycemia (portal vein glucose = 5.86 +/- 0.10 mM); and 3) EUG-EUG: systemic euglycemia (6.33 +/- 0.31 mM). On day 2, all groups underwent a hyperinsulinemic-hypoglycemic clamp in which the fall in glycemia was controlled so as to reach the nadir (2.34 +/- 0.04 mM) by minute 75. Counterregulatory hormone responses were measured at basal (-30 and 0) and during hypoglycemia (60-105 min). Compared with EUG-EUG, antecedent hypoglycemia (HYPO-HYPO) significantly blunted the peak epinephrine (10.44 +/- 1.35 vs. 15.75 +/- 1.33 nM: P = 0.01) and glucagon (341 +/- 16 vs. 597 +/- 82 pg/ml: P = 0.03) responses to next-day hypoglycemia. Normalization of portal glycemia during systemic hypoglycemia on day 1 (HYPO-EUG) prevented blunting of the peak epinephrine (15.59 +/- 1.43 vs. 15.75 +/- 1.33 nM: P = 0.94) and glucagon (523 +/- 169 vs. 597 +/- 82 pg/ml: P = 0.66) responses to day 2 hypoglycemia. Consistent with hormonal responses, the glucose infusion rate during day 2 hypoglycemia was substantially elevated in HYPO-HYPO (74 +/- 12 vs. 49 +/- 4 micromol x kg(-1) x min(-1); P = 0.03) but not HYPO-EUG (39 +/- 7 vs. 49 +/- 4 micromol x kg(-1) x min(-1): P = 0.36). Antecedent hypoglycemia local to the portal vein is required for the full induction of hypoglycemia-associated counterregulatory failure with slow-onset hypoglycemia.  相似文献   

19.
The glucoregulatory response to intense exercise [IE, >80% maximum O(2) uptake (VO(2 max))] comprises a marked increment in glucose production (R(a)) and a lesser increment in glucose uptake (R(d)), resulting in hyperglycemia. The R(a) correlates with plasma catecholamines but not with the glucagon-to-insulin (IRG/IRI) ratio. If epinephrine (Epi) infusion during moderate exercise were able to markedly stimulate R(a), this would support an important role for the catecholamines' response in IE. Seven fit male subjects (26 +/- 2 yr, body mass index 23 +/- 0.5 kg/m(2), VO(2 max) 65 +/- 5 ml x kg(-1) x min(-1)) underwent 40 min of postabsorptive cycle ergometer exercise (145 +/- 14 W) once without [control (CON)] and once with Epi infusion [EPI (0.1 microg x kg(-1) x min(-1))] from 30 to 40 min. Epi levels reached 9.4 +/- 0.8 nM (20x rest, 10x CON). R(a) increased approximately 70% to 3.75 +/- 0.53 in CON but to 8.57 +/- 0.58 mg x kg(-1) x min(-1) in EPI (P < 0.001). Increments in R(a) and Epi correlated (r(2) = 0.923, P 相似文献   

20.
Kinetics of intramuscular triglyceride fatty acids in exercising humans.   总被引:6,自引:0,他引:6  
A pulse ([(14)C]palmitate)-chase ([(3)H]palmitate) approach was used to study intramuscular triglyceride (imTG) fatty acid and plasma free fatty acid (FFA) kinetics during exercise at approximately 45% peak O(2) consumption in 12 adults. Vastus lateralis muscle was biopsied before and after 90 min of bicycle exercise; (3)H(2)O production, breath (14)CO(2) excretion and lipid oxidation (indirect calorimetry) rates were measured during exercise. Results: during exercise, 8.2+/-1.2 and 8.4+/-0.7 micromol x kg(-1) x min(-1) of imTG fatty acids and plasma FFA, respectively, were oxidized according to isotopic measurements. The sum of these two values was not different (P = 0.6) from lipid oxidation by indirect calorimetry (15.4 +/-1.6 micromol x kg(-1) x min(-1)); the isotopic and indirect calorimetry values were correlated (r = 0.79, P<0.005). During exercise, imTG turnover rate was 0.32+/-0.07%/min (6.0+/-2.0 micromol of imTG x kg wet muscle(-1) x min(-1)) and plasma FFA were incorporated into imTG at a rate of 0.7+/-0.1 micromol x kg wet muscle(-1) x min(-1). The imTG pool size did not change during exercise. This pulse-chase, dual tracer appears to be a reasonable approach to measure oxidation and synthesis kinetics of imTG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号