首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O(2) uptake, seven subjects received, in random order, either a sodium lactate infusion (60 micromol x kg(-1) x min(-1)) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring (2)H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (R(a)) was measured by [6,6-(2)H(2)]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 +/- 0.6 mM (mean +/- SE). Exercise induced a decrease in blood glucose concentration from 5.0 +/- 0.2 to 4.2 +/- 0.3 mM (P < 0.05); lactate infusion abolished this decrease (5.0 +/- 0.3 mM; P < 0.001) and increased glucose R(a) compared with bicarbonate infusion (P < 0.05). Lactate infusion increased both GNG from lactate (29 +/- 4 to 46 +/- 4% of glucose R(a), P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1). increased GNG from lactate and 2). increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.  相似文献   

2.
The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1-phosphate --> glucose 6-phosphate --> glucose. Healthy men (n = 7) were fasted for 44 h. At 40 h, hepatic glycogen stores were depleted. GNG then contributed approximately 90% to a GP of approximately 8 micromol.kg(-1).min(-1). Galactose, 9 g/h, was infused over the next 4 h. The contribution of GNG to GP declined from approximately 90% to 65%, i.e., by approximately 2 micromol.kg(-1).min(-1). The rate of galactose conversion to blood glucose, measured by labeling the infused galactose with [1-(2)H]galactose (n = 4), was also approximately 2 micromol.kg(-1).min(-1). The 41st h GP rose by approximately 1.5 micromol.kg(-1).min(-1) and then returned to approximately 9 micromol.kg(-1).min(-1), while plasma glucose concentration increased from approximately 4.5 to 5.3 mM, accompanied by a rise in plasma insulin concentration. Over 50% of the galactose infused was accounted for in blood glucose and hepatic glycogen formation. Thus an increase in the rate of GP via the glycogenolytic pathway resulted in a concomitant decrease in the rate of GP via GNG. While the compensatory response to the galactose administration was not complete, since GP increased, hepatic autoregulation is operative in healthy humans during prolonged fasting.  相似文献   

3.
The liver is considered the main contributor of endogenous glucose production (EGP) in the postabsorptive (PA) state in mammals. However, it has been shown that the kidney, in PA and fasting states, and the intestine, in insulinopenia states, could make significant contributions to EGP. Using glucose tracer dilution combined to a vessel ligaturing approach, we studied the respective role of these organs in glucose turnover under various nutritional conditions in the rat (Rattus norvegicus). Both organs constitute key sites of glucose disposal in all situations in the non-moving rat. The kidney makes a small (12%) contribution to EGP in the PA state (9.6+/-1.3 micromol/kg min, means+/-SEM, n=5), which is dramatically increased (p<0.01) in 24 h-fasting (18.8+/-1.0 micromol/kg min) or streptozotocin diabetes (48+/-3 micromol/kg min). The small intestine contributes to EGP via two ways: a direct glucose contribution that may only take place in fasting and diabetes; an indirect contribution via the supply of alanine and lactate to liver gluconeogenesis that may account for up to 5 micromol/kg min in both PA and fasted states in the rat. These data emphasize the coordinate interactions among the three gluconeogenic organs in glucose homeostasis when nutritional conditions are changing.  相似文献   

4.
The diabetogenic effect of excess growth hormone (GH) such as that in acromegaly is well known. However, the contribution of the various components to hepatic glucose production (HGP) is not completely understood. In this study we evaluated insulin resistance, HGP, gluconeogenesis (GNG), and glycogenolysis (GLY) in five patients with acromegaly before and after pituitary microsurgery. Insulin resistance was estimated by the HOMA index. HGP was measured using a primed continuous (6,6- 2H2) glucose infusion, and GNG was measured from 2 H enrichment at carbons 2 and 5 of blood glucose on ingestion of 2H2O. The ratio of these enrichments equals the fractional contribution of GNG to HGP, and GLY was calculated as the difference between HGP and GNG. All measurements were performed after 12 hours of fasting. Levels of GH and IGF-I decreased, as did the HOMA index (p<0.05). HGP was reduced from 11.4 micromol/kg/min to 9.7 micromol/kg/min (p=0.032). GNG contributed most to HGP. GNG was unchanged, whereas GLY's fraction decreased 29% (p=0.056) postoperatively. This pilot study indicates that GNG is the main contributor to HGP and that GLY is more sensitive than is GNG to the insulin resistance existing in acromegaly.  相似文献   

5.
A high-sucrose (SU) diet increases gluconeogenesis (GNG) in the liver. The present study was conducted to determine the contribution of periportal (PP) and perivenous (PV) cell populations to this SU-induced increase in GNG. Male Sprague-Dawley rats were fed an SU (68% sucrose) or starch (ST, 68% starch) diet for 1 wk, and hepatocytes were isolated from the PP or PV region of the liver acinus. Hepatocytes were incubated for 1 h in the presence of various gluconeogenic substrates, and glucose release into the medium was used to estimate GNG. When incubated in the presence of 5 mM lactate, which enters GNG at the level of pyruvate, glucose release (nmol x h(-1) x mg(-1)) was significantly increased by the SU diet in both PP (84.8 +/- 3.4 vs. 70.4 +/- 2.6) and PV (64.3 +/- 2.5 vs. 38.2 +/- 2.1) cells. Addition of palmitate (0.5 mM) increased glucose release from lactate in PP cells by 11.6 +/- 0.5 and 20.6 +/- 1.5% and in PV cells by 11.0 +/- 4.4 and 51.1 +/- 9.1% in SU and ST, respectively. When cells were incubated with 5 mM dihydroxyacetone (DHA), which enters GNG at the triosephosphate level, glucose release was significantly increased by the SU diet in both cell types. In contrast, glucose release from fructose (0.5 mM) was significantly increased by the SU diet in PV cells only. These changes in glucose release were accompanied by significant increases in the maximal specific activities of glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK) in both PP and PV cells. These data suggest that the SU diet influences GNG in both PP and PV cell populations. It appears that SU feeding produces changes in GNG via alterations in at least two critical enzymes, G-6-Pase and PEPCK.  相似文献   

6.
In preterm infants, both hypo- and hyperglycemia are a frequent problem. Intravenous lipids can affect glucose metabolism by stimulation of gluconeogenesis by providing glycerol, which is a gluconeogenic precursor, and/or free fatty acids (FFA), which are stimulants of the rate of gluconeogenesis. In 25 preterm infants, glucose production and gluconeogenesis were measured using stable isotope techniques during a 6-h infusion of glucose only, glucose plus glycerol, or glucose plus an intravenous lipid emulsion. Two lipid emulsions differing in FFA composition were used: Intralipid ( approximately 60% polyunsaturated FFA) and Clinoleic (approximately 60% monounsaturated FFA). The rate of glucose infusion was 22 micromol x kg(-1) x min(-1) in all groups. During the study infusion, the FFA concentrations were higher in both lipid groups vs. the glycerol group (P < 0.001). Compared with baseline, the glucose production rate increased in the Intralipid group, whereas it decreased in the other groups (P = 0.002) due to a significant increase in gluconeogenesis in the Intralipid group (P = 0.016). The plasma glucose concentration was significantly higher during Intralipid infusion vs. the other groups (P = 0.046). Our conclusion was that Intralipid enhanced glucose production by increasing gluconeogenesis in preterm infants. This can be ascribed to the stimulatory effect of FFA in addition to any effect of glycerol alone. The lack of stimulation of gluconeogenesis in the Clinoleic vs. the Intralipid group suggests that different classes of fatty acids exert different effects on glucose kinetics in preterm infants.  相似文献   

7.
Free fatty acids (FFA) have been shown to inhibit insulin suppression of endogenous glucose production (EGP). To determine whether this is the result of stimulation by FFA of gluconeogenesis (GNG) or glycogenolysis (GL) or a combination of both, we have determined rates of GNG and GL (with (2)H(2)O) and EGP in 16 healthy nondiabetic volunteers (11 males, 5 females) during euglycemic-hyperinsulinemic (~450 pM) clamping performed either with or without simultaneous intravenous infusion of lipid plus heparin. During insulin infusion, FFA decreased from 571 to 30 micromol/l (P < 0.001), EGP from 15.7 to 2.0 micromol x kg(-1) x min(-1) (P < 0.01), GNG from 8.2 to 3.7 micromol x kg(-1). min(-1) (P < 0.05), and GL from 7.4 to -1.7 micromol x kg(-1). min(-1) (P < 0.02). During insulin plus lipid/heparin infusion, FFA increased from 499 to 1,247 micromol/l (P < 0.001). EGP decreased 64% less than during insulin alone (-5.1 +/- 0.7 vs. -13.7 +/- 3.4 micromol x kg(-1). min(-1)). The decrease in GNG was not significantly different from the decrease of GNG during insulin alone (-2.6 vs. -4.5 micromol x kg(-1). min(-1), not significant). In contrast, GL decreased 66% less than during insulin alone (-3.1 vs. -9.2 micromol x kg(-1). min(-1), P < 0.05). We conclude that insulin suppressed EGP by inhibiting GL more than GNG and that elevated plasma FFA levels attenuated the suppression of EGP by interfering with insulin suppression of GL.  相似文献   

8.
Splanchnic and renal net balance measurements indicate that lactate and glycerol may be important precursors for epinephrine-stimulated gluconeogenesis (GNG) in liver and kidney, but the effects of epinephrine on their renal and hepatic conversion to glucose in humans have not yet been reported. We therefore used a combination of renal balance and isotopic techniques in nine postabsorptive volunteers to measure systemic and renal GNG from these precursors before and during a 3-h infusion of epinephrine (270 pmol. kg-1. min-1) and calculated hepatic GNG as the difference between systemic and renal rates. During infusion of epinephrine, renal and hepatic GNG from lactate increased 4- to 6-fold and accounted for approximately 85 and 70% of renal and hepatic glucose release, respectively, at the end of study; renal and hepatic GNG from glycerol increased approximately 1.5- to 2-fold and accounted for approximately 7-9% of renal and hepatic glucose release at the end of study. The increased renal GNG from lactate and glycerol was due not only to their increased renal uptake (approximately 3.3- and 1.4-fold, respectively) but also increased renal gluconeogenic efficiency (approximately 1.8- and 1.5-fold). The increased renal uptake of lactate and glycerol was wholly due to their increased arterial concentrations, since their renal fractional extraction remained unchanged and renal blood flow decreased. We conclude that 1) lactate is the predominant precursor for epinephrine-stimulated GNG in both liver and kidney, 2) hepatic and renal GNG from lactate and glycerol are similarly sensitive to stimulation by epinephrine, and 3) epinephrine increases renal GNG from lactate and glycerol by increasing substrate availability and the gluconeogenic efficiency of the kidney.  相似文献   

9.
Coenzyme Q10(CoQ10) in human milk at different stages of maturity in mothers of preterm and full-term infants and its relation to the total antioxidant capacity of milk is described for the first time. Thirty healthy breastfeeding women provided colostrum, transition-milk and mature-milk samples. Coenzyme Q, alpha-, gamma- and delta-tocopherol, fatty acids and the total antioxidant capacity of the milk were analyzed. Coenzyme Q10 was found at higher concentrations for colostrum (0.81+/-0.06 vs. 0.50+/-0.05 micromol/l) and transition milk (0.75+/-0.06 vs. 0.45+/-0.05 micromol/l) in the full-term vs. the preterm group (similar results were found for total antioxidant capacity). Concentrations of alpha- and gamma-tocopherol were higher in the full-term group and decreased with time. In conclusion, CoQ10 is present in breast milk, with higher concentration in mothers of full-term infants. CoQ10 in breast milk decreases through lactation in mothers delivering full-term infants. Also, CoQ10, alpha- and gamma-tocopherol concentration in human milk directly correlates with the antioxidant capacity of the milk.  相似文献   

10.
Whereas many reports substantiated the suitability of using [2-(13)C]glycerol and Mass Isotoper Distribution Analysis for gluconeogenesis, the use of [(13)C]glycerol had been shown to give lower estimates of gluconeogenesis (GNG). The reason for the underestimation has been attributed to asymmetric isotope incorporation during gluconeogenesis as well as zonation of gluconeogenic enzymes and a [(13)C]glycerol gradient across the liver. Since the cycling of glycerol carbons through the pentose cycle pathways can introduce asymmetry in glucose labeling pattern and tracer dilution, we present here a study of the role of the pentose cycle in gluconeogenesis in Fao cells. The metabolic regulation of glucose release and gluconeogenesis by insulin was also studied. Serum-starved cells were incubated for 24 h in Dulbecco's modified Eagle's media containing 1.5 mm [U-(13)C]glycerol. Mass isotopomers of whole glucose from medium or glycogen and those of the C-1-C-4 fragment were highly asymmetrical, typical of that resulting from the cycling of glucose carbon through the pentose cycle. Substantial exchange of tracer between hexose and pentose intermediates was observed. Our results offer an alternative mechanism for the asymmetrical labeling of glucose carbon from triose phosphate. The scrambling of (13)C in hexose phosphate via the pentose phosphate cycle prior to glucose release into the medium is indistinguishable from dilution of labeled glucose by glycogen using MIDA and probably accounts for the underestimation of GNG using (13)C tracer methods.  相似文献   

11.
Perinatal onset of hepatic gluconeogenesis in the lamb   总被引:2,自引:0,他引:2  
Hepatic gluconeogenesis does not occur in the unstressed fetal sheep. After birth, in addition to glycogenolysis, the newborn lamb must eventually initiate gluconeogenesis to maintain glucose homeostasis. The regulation and time course of this transition have not been defined. We studied six animals in an acute preparation before and after delivery to determine hepatic lactate and glucose uptake, hepatic gluconeogenesis from lactate, and plasma catecholamine and cortisol concentrations. After a priming dose, continuous infusion of [14C]lactate provided tracer substrate for calculations of gluconeogenesis in the fetus and then for ten hours after delivery in the newborn lamb. The radionuclide-labelled microsphere method was used to measure hepatic blood flow. Appreciable gluconeogenesis was not present during the fetal period. Following delivery, the newborn lambs began to produce significant quantities of glucose from lactate at 6 h of age (1.37 +/- 0.84 mg.min-1.100 g-1 min-1 x 100 g-1 liver), when gluconeogenesis from lactate accounted for 22% of hepatic glucose output. Despite the onset of gluconeogenesis, postnatal lambs had blood glucose concentrations that remained less than fetal levels of 23.4 +/- 12.1 mg/dl for the duration of the 10-h study. Plasma norepinephrine concentration was 1380 +/- 1145 pg/ml in the fetus and fell by 2 h after birth. Plasma epinephrine concentrations were highest at 15 min after birth (205 +/- 262 pg/ml), but remained quite low for the remainder of the study. Plasma cortisol concentrations did not vary over the course of study, ranging from 40 to 50 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   

13.
The role of substrate availability in the regulation of gluconeogenesis in isolated rat hepatocytes was studied using [U-14C]alanine as a tracer in the presence of different concentrations of L-alanine in the incubation medium. At low alanine concentrations (0.5 mM) insulin decreased the 14C incorporation into the glucose pool and increased the incorporation of tracer carbons into the protein and lipid pools and into CO2. The net radioactivity lost from the glucose pool was only a small percentage of the total increase in the activity of the protein, lipid, CO2, or glycogen pools, supporting the notion that the effect of insulin in diminishing gluconeogenesis is secondary to its effects on pathways using pyruvate. At higher concentrations of alanine (2.5, 5.0, and 10.0 mM) in the incubation medium insulin increased the movement of alanine carbons into protein and glucose. This suggests that at higher substrate concentrations the ability of the liver to synthesize proteins is overwhelmed and the pyruvate carbons are forced into the gluconeogenesis pathway. These results were further confirmed by using [U-14C]lactate. The increases in observed specific activity of glucose following insulin administration would not be possible if insulin acted by affecting the activity of any enzyme directly involved in the formation or utilization of pyruvate, most of which have been proposed as sites of insulin action. Data presented show that insulin "inhibits" gluconeogenesis by affecting a change in substrate availability.  相似文献   

14.
The purpose of this study was to compare the assessment of gluconeogenesis (GNG) in the overnight- and prolonged-fasted states and during chronic hypercortisolemia using the arteriovenous difference and [14C]phosphoenolpyruvate-liver biopsy techniques as well as a combination of the two. Two weeks before a study, catheters and flow probes were implanted in the hepatic and portal veins and femoral artery of dogs. Animals were studied after an 18-h fast (n = 8), a 42- or 66-h fast (n = 7), and an 18-h fast plus a continuous infusion of cortisol (3.0 microg. kg(-1). min(-1)) for 72 h (n = 7). Each experiment consisted of an 80-min tracer ([3-(3)H]glucose and [U-(14)C]alanine) and dye equilibration period (-80 to 0 min) and a 45-min sampling period. In the cortisol-treated group, plasma cortisol increased fivefold. In the overnight-fasted group, total GNG flux rate (GNG(flux)), conversion of glucose 6-phosphate to glucose (GNG(G-6-P-->Glc)), glucose cycling, and maximal GNG flux rate (GNG(max)) were 0.95 +/- 0.14, 0.65 +/- 0.06, 0.62 +/- 0.06, and 0.70 +/- 0.09 mg. kg(-1). min(-1), respectively. In the prolonged-fasted group, they were 1.50 +/- 0.18, 1.18 +/- 0.13, 0.40 +/- 0.07, and 1.28 +/- 0.10 mg. kg(-1). min(-1), whereas in the cortisol-treated group they were 1.64 +/- 0.33, 0.99 +/- 0.29, 1.32 +/- 0.24, and 0.91 +/- 0.13 mg. kg(-1). min(-1). These results demonstrate that GNG(G-6-P-->Glc) and GNG(max) were almost identical. However, these rates were 15-38% lower than GNG(flux) generated by a combination of the two methods. This difference was most apparent in the steroid-treated group, where the combination of the two methods (GNG(flux)) detected a significant increase in gluconeogenic flux.  相似文献   

15.
We tested the generally accepted concept that increased gluconeogenesis (GNG) and endogenous glucose production (EGP) are the main reasons for postabsorptive hyperglycemia in patients with type 2 diabetes mellitus (T2DM). GNG was measured with the (2)H(2)O method by use of both the C5-to-C2 ratio (C5/C2, with gas chromatography-mass spectrometry) and the C5-to-(2)H(2)O ratio (C5/(2)H(2)O, with isotope ratio mass spectrometry), and EGP was measured with 3-[(3)H]glucose in 27 patients with T2DM [13 with fasting plasma glucose (FPG) >10 mM and 14 with FPG <10 mM] and in 7 weight- and age-matched nondiabetic controls. The results showed 1) that GNG could be determined accurately with (2)H(2)O by using either C5/C2 or C5/(2)H(2)O; 2) that whereas after an overnight fast of 16 h, GNG was higher in the entire group of patients with T2DM than in controls (6.4 vs. 5.0 micromol. kg(-1). min(-1) or 60.4 vs. 51.4% of EGP, P < 0.02), GNG was within normal limits (less than the mean +/- 2 SD of controls or <65.3%) in 11/14 (79%) patients with mild to moderate hyperglycemia (FPG <10 mM) and in 5/13 (38%) of patients with severe hyperglycemia (FPG 10-20 mM); 3) that elevated GNG in T2DM was associated with a 43% decrease in prehepatic insulin secretion, i.e., with hepatic insulin deficiency; and 4) that FPG correlated significantly with glucose clearance (insulin resistance) (r = 0.70) and with GNG (r = 0.50) or EGP (r = 0.45). We conclude 1) that peripheral insulin resistance is at least as important as GNG (and EGP) as a cause of postabsorptive hyperglycemia in T2DM and 2) that GNG and EGP in T2DM are increased under conditions of significant hepatic insulin deficiency and thus probably represent a late event in the course of T2DM.  相似文献   

16.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

17.
To determine the effect of glucose availability on glutamine metabolism, glutamine kinetics were assessed under conditions of hyperglycemia resulting from 1) intravenous infusion of 7.5% dextrose in healthy adults and 2) insulin deficiency in young adults with insulin-dependent diabetes mellitus (IDDM). Eight healthy adults and five young adults with IDDM were studied in the postabsorptive state by use of a primed continuous infusion of D-[U-(14)C]glucose, L-[5,5,5-(2)H(3)]leucine, and L-[3, 4-(13)C]glutamine. Whether resulting from insulin deficiency or dextrose infusion, the rise in plasma glucose was associated with increased glucose turnover (23.5 +/- 0.7 vs. 12.9 +/- 0.3 micromol. kg(-1). min(-1), P < 0.01 and 20.9 +/- 2.5 vs. 12.8 +/- 0.4 micromol. kg(-1). min(-1), P = 0.03, in health and IDDM, respectively). In both cases, high blood glucose failed to alter glutamine appearance rate (R(a)) into plasma [298 +/- 9 vs. 312 +/- 14 micromol. kg(-1). h(-1), not significant (NS) and 309 +/- 23 vs 296 +/- 26 micromol. kg(-1). h(-1), NS, in health and IDDM, respectively] and the estimated fraction of glutamine R(a) arising from de novo synthesis (210 +/- 7 vs. 217 +/- 10 micromol. kg(-1). h(-1), NS and 210 +/- 16 vs. 207 +/- 21 micromol. kg(-1). h(-1), NS, in health and IDDM, respectively). When compared with the euglycemic day, the apparent contribution of glucose to glutamine carbon skeleton increased when high plasma glucose resulted from intravenous dextrose infusion in healthy volunteers (10 +/- 0.8 vs. 4.8 +/- 0.3%, P < 0.01) but failed to do so when hyperglycemia resulted from insulin deficiency in IDDM. We conclude that 1) the contribution of glucose to the estimated rate of glutamine de novo synthesis does not increase when elevation of plasma glucose results from insulin deficiency, and 2) the transfer of carbon from glucose to glutamine may depend on insulin availability.  相似文献   

18.
We compared kinetic indices of pulmonary surfactant metabolism in premature infants (n = 41) with respect to i) tracer ([1-(13)C1]acetate, [U-(13)C6]glucose, and [1,2,3,4-(13)C4] palmitate), ii) phospholipid (PL) pool (total PLs or disaturated PLs), or iii) instrumentation [gas chromatography/mass spectrometry (GC/MS) or GC-combustion-isotope ratio mass spectometry (GC-C-IRMS)]. Tracer incorporation was measured in PLs extracted from serial tracheal aspirates after a 24 h tracer infusion. The fractional catabolic rate (FCR), representing the total fractional turnover from all sources of surfactant production, was independent of tracer. The fractional synthesis rate of surfactant PL from plasma palmitate was significantly higher than that from palmitate synthesized de novo from acetate, and these two sources of palmitate together accounted for only half of the total surfactant production in preterm infants. [U-(13)C6]glucose showed significant recycling of the (13)C label in intermediary metabolism, distinguishable by GC-MS but not by GC-C-IRMS, resulting in a slower apparent FCR when GC-C-IRMS was used. The extracted PL pool did not affect the surfactant metabolic indices. We suggest that FCR should be used as a primary measure of surfactant turnover kinetics and that tracers labeling both de novo synthesis (acetate and glucose) and preformed pathways (plasma palmitate) can be used to partition the fractional contribution of each pathway to total production.  相似文献   

19.
Increased gluconeogenesis in the rat at term gestation   总被引:3,自引:0,他引:3  
In this study the contribution of maternal gluconeogenesis to the glucose homeostasis of the maternal-fetal unit has been studied in fed term pregnant rats. We have measured the activity of two gluconeogenic enzymes, the rates of lactate turnover and the rates of gluconeogenesis from lactate in fed term pregnant rats. A decrease in plasma glucose and liver glycogen concentrations, and an increase of plasma lactate and alanine concentrations were observed in fed 22-day pregnant rats compared to virgin controls. Also, liver and kidney phosphoenolpyruvate carboxykinase activities and liver lactate dehydrogenase and hexose bisphosphatase activities significantly increased in fed term pregnant rats compared to virgin rats. The lactate turnover rate and the rate of gluconeogenesis in vivo from L-[U14C] Lactate increased four- and two-fold respectively in fed pregnant rats compared to fed virgins.  相似文献   

20.
We have developed and validated a new method to measure simultaneously glucose turnover, alanine turnover, and gluconeogenesis in human, in steady and non-steady states, using a double stable-isotope-labeled tracer infusion and GC-MS analysis. The method is based on the concomitant infusion and dilution of D-[2,3,4,6,6-2H5]glucose and L-[1,2,3-13C3]alanine. The choice of the tracers was done on the basis of a minimal overlap between the ions of interest and those arising from natural isotopic abundances. Alanine was chosen as the gluconeogenic substrate because it is the major gluconeogenic amino acid extracted by the liver and, with lactate, constitutes the bulk of the gluconeogenic precursors. The method was validated by comparing the results obtained during simultaneous infusion of trace amounts of both stable isotope labeled compounds with the radioactive tracers (D-[3-3H]glucose and L-[1,2,3-14C3]alanine) in a normal and a diabetic subject; the radiolabeled tracers were used as the accepted reference procedure. A slight overestimation of glucose turnover (7.3 versus 6.8 in normal and 10.8 versus 9.2 mumol/kg min in diabetic subject) was noticed when the stable isotope-labeled tracers were used. For the basal turnover rate of alanine, similar values were obtained with both methods (6.2 mumol/kg min). For gluconeogenesis, higher values were observed in the basal state with the stable isotopes (0.42 versus 0.21 mumol/kg min); however, these differences disappeared in the postprandial period after the ingestion of a mixed meal. Despite those minor differences, the overall correlation with the reference method was excellent for glucose turnover (r = 0.87) and gluconeogenesis (r = 0.86).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号