首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using 29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and “clusters of orthologous groups” (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.  相似文献   

2.
The nature of codon 57 in the HLA-DQ beta gene was recently reported as a potential marker of genetic susceptibility to insulin-dependent diabetes mellitus. When exploring the relevance of this marker by using genomic DNA amplification, we encountered difficulties resulting from the coamplification of the homologous DX beta region. A simple strategy is proposed to amplify the DQ beta region exclusively. It involves the preliminary digestion of genomic DNA with a restriction enzyme which cleaves DX beta specifically, leaving intact the DQ beta sequence. The amplified material is suitable for dot blot analysis and restriction enzyme digestion. This strategy is of general interest when homologous sequences impair the specificity of enzymatic DNA amplification.  相似文献   

3.
Construction of DNA fragment libraries for next-generation sequencing can prove challenging, especially for samples with low DNA yield. Protocols devised to circumvent the problems associated with low starting quantities of DNA can result in amplification biases that skew the distribution of genomes in metagenomic data. Moreover, sample throughput can be slow, as current library construction techniques are time-consuming. This study evaluated Nextera, a new transposon-based method that is designed for quick production of DNA fragment libraries from a small quantity of DNA. The sequence read distribution across nine phage genomes in a mock viral assemblage met predictions for six of the least-abundant phages; however, the rank order of the most abundant phages differed slightly from predictions. De novo genome assemblies from Nextera libraries provided long contigs spanning over half of the phage genome; in four cases where full-length genome sequences were available for comparison, consensus sequences were found to match over 99% of the genome with near-perfect identity. Analysis of areas of low and high sequence coverage within phage genomes indicated that GC content may influence coverage of sequences from Nextera libraries. Comparisons of phage genomes prepared using both Nextera and a standard 454 FLX Titanium library preparation protocol suggested that the coverage biases according to GC content observed within the Nextera libraries were largely attributable to bias in the Nextera protocol rather than to the 454 sequencing technology. Nevertheless, given suitable sequence coverage, the Nextera protocol produced high-quality data for genomic studies. For metagenomics analyses, effects of GC amplification bias would need to be considered; however, the library preparation standardization that Nextera provides should benefit comparative metagenomic analyses.  相似文献   

4.
Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied. The abundance and methane oxidation activity of Methylocystis spp. were further confirmed by DNA stable-isotope probing analysis of a sample taken from the Moor House peatland (England). After ultracentrifugation, (13)C-labelled DNA, containing genomic DNA of these Methylocystis spp., was separated from (12)C DNA and subjected to multiple displacement amplification (MDA) to generate sufficient DNA for the preparation of a fosmid metagenomic library. Potential bias of MDA was detected by fingerprint analysis of 16S rRNA using denaturing gradient gel electrophoresis for low-template amplification (0.01 ng template). Sufficient template (1-5 ng) was used in MDA to circumvent this bias and chimeric artefacts were minimized by using an enzymatic treatment of MDA-generated DNA with S1 nuclease and DNA polymerase I. Screening of the metagenomic library revealed one fosmid containing methanol dehydrogenase and two fosmids containing 16S rRNA genes from these Methylocystis-related species as well as one fosmid containing a 16S rRNA gene related to that of Methylocella/Methylocapsa. Sequencing of the 14 kb methanol dehydrogenase-containing fosmid allowed the assembly of a gene cluster encoding polypeptides involved in bacterial methanol utilization (mxaFJGIRSAC). This combination of DNA stable-isotope probing, MDA and metagenomics provided access to genomic information of a relatively large DNA fragment of these thus far uncultivated, predominant and active methanotrophs in peatland soil.  相似文献   

5.
DNA quantity can be a hindrance in ecological and evolutionary research programmes due to a range of factors including endangered status of target organisms, available tissue type, and the impact of field conditions on preservation methods. A potential solution to low‐quantity DNA lies in whole genome amplification (WGA) techniques that can substantially increase DNA yield. To date, few studies have rigorously examined sequence bias that might result from WGA and next‐generation sequencing of nonmodel taxa. To address this knowledge deficit, we use multiple displacement amplification (MDA) and double‐digest RAD sequencing on the grey mouse lemur (Microcebus murinus) to quantify bias in genome coverage and SNP calls when compared to raw genomic DNA (gDNA). We focus our efforts in providing baseline estimates of potential bias by following manufacturer's recommendations for starting DNA quantities (>100 ng). Our results are strongly suggestive that MDA enrichment does not introduce systematic bias to genome characterization. SNP calling between samples when genotyping both de‐novo and with a reference genome are highly congruent (>98%) when specifying a minimum threshold of 20X stack depth to call genotypes. Relative genome coverage is also similar between MDA and gDNA, and allelic dropout is not observed. SNP concordance varies based on coverage threshold, with 95% concordance reached at ~12X coverage genotyping de‐novo and ~7X coverage genotyping with the reference genome. These results suggest that MDA may be a suitable solution for next‐generation molecular ecological studies when DNA quantity would otherwise be a limiting factor.  相似文献   

6.
Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76 degrees C) and river water (14 degrees C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82 degrees C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84 degrees C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84 degrees C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.  相似文献   

7.
Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P?0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.  相似文献   

8.
rRNA-based studies, which have become the most common method for assessing microbial communities, rely upon faithful amplification of the corresponding genes from the original DNA sample. We report here an analysis and reevaluation of commonly used primers for amplifying the DNA between positions 27 and 1492 of bacterial 16S rRNA genes (numbered according to the Escherichia coli rRNA). We propose a formulation for a forward primer (27f) that includes three sequences not usually present. We compare our proposed formulation to two common alternatives by using linear amplification-providing an assessment that is independent of a reverse primer-and in combination with the 1492 reverse primer (1492r) under the PCR conditions appropriate for making community rRNA gene clone libraries. For analyses of DNA from human vaginal samples, our formulation was better at maintaining the original rRNA gene ratio of Lactobacillus spp. to Gardnerella spp., particularly under stringent amplification conditions. Because our 27f formulation remains relatively simple, having seven distinct primer sequences, there is minimal loss of overall amplification efficiency and specificity.  相似文献   

9.
Bacterial diversity in 16S ribosomal DNA and reverse-transcribed 16S rRNA clone libraries originating from the heavy metal-contaminated rhizosphere of the metal-hyperaccumulating plant Thlaspi caerulescens was analysed and compared with that of contaminated bulk soil. Partial sequence analysis of 282 clones revealed that most of the environmental sequences in both soils affiliated with five major phylogenetic groups, the Actinobacteria, alpha-Proteobacteria, beta-Proteobacteria, Acidobacteria and the Planctomycetales. Only 14.7% of all phylotypes (sequences with similarities> 97%), but 45% of all clones, were common in the rhizosphere and the bulk soil clone libraries. The combined use of rDNA and rRNA libraries indicated which taxa might be metabolically active in this soil. All dominant taxa, with the exception of the Actinobacteria, were relatively less represented in the rRNA libraries compared with the rDNA libraries. Clones belonging to the Verrucomicrobiales, Firmicutes, Cytophaga-Flavobacterium-Bacteroides and OP10 were found only in rDNA clone libraries, indicating that they might not represent active constituents in our samples. The most remarkable result was that sequences belonging to the Actinobacteria dominated both bulk and rhizosphere soil libraries derived from rRNA (50% and 60% of all phylotypes respectively). Seventy per cent of these clone sequences were related to the Rubrobacteria subgroups 2 and 3, thus providing for the first time evidence that this group of bacteria is probably metabolically active in heavy metal-contaminated soil.  相似文献   

10.
Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.  相似文献   

11.
We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group-specific primers in combination with a terminal restriction fragment length polymorphism profile. Intact cells were extracted from the environmental sample, and fluorescent in situ hybridization probing with Cy3-labeled probes designed from the clone library was subsequently used to detect the organisms of interest. Single cells with a bright fluorescent signal were isolated using a micromanipulator and the genome of the single isolated cells served as a template for multiple displacement amplification (MDA) using the Phi29 DNA polymerase. The generated MDA product was afterwards used for 16S rRNA gene sequence analysis and shotgun-cloned for additional genomic analysis. Sequence analysis showed >99% 16S rRNA gene homology to soil crenarchaeotal clone SCA1170 and shotgun fragments had the closest match to a crenarchaeotal BAC clone previously retrieved from a soil sample. The system was validated using Methanothermobacter thermoautotrophicus as single-cell test organism, and the validation setup produced 100% sequence homology to the ten tested regions of the genome of this organism.  相似文献   

12.
13.
Over the last decade, culture-independent surveys of marine picoeukaryotic diversity based on 18S ribosomal DNA clone libraries have unveiled numerous sequences of novel high-rank taxa. This newfound diversity has significantly altered our understanding of marine microbial food webs and the evolution of eukaryotes. However, the current picture of marine eukaryotic biodiversity may be significantly skewed by PCR amplification biases, occurrence of rDNA genes in multiple copies within a single cell, and the capacity of DNA to persist as extracellular material. In this study we performed an analysis of the metagenomic dataset from the Global Ocean Survey (GOS) expedition, seeking eukaryotic ribosomal signatures. This PCR-free approach revealed similar phylogenetic patterns to clone library surveys, suggesting that PCR steps do not impose major biases in the exploration of environmental DNA. The different cell size fractions within the GOS dataset, however, displayed a distinct picture. High protistan diversity in the <0.8 µm size fraction, in particular sequences from radiolarians and ciliates (and their absence in the 0.8–3 µm fraction), suggest that most of the DNA in this fraction comes from extracellular material from larger cells. In addition, we compared the phylogenetic patterns from rDNA and reverse transcribed rRNA 18S clone libraries from the same sample harvested in the Mediterranean Sea. The libraries revealed major differences, with taxa such as pelagophytes or picobiliphytes only detected in the 18S rRNA library. MAST (Marine Stramenopiles) appeared as potentially prominent grazers and we observed a significant decrease in the contribution of alveolate and radiolarian sequences, which overwhelmingly dominated rDNA libraries. The rRNA approach appears to be less affected by taxon-specific rDNA copy number and likely better depicts the biogeochemical significance of marine protists.  相似文献   

14.
15.
A PCR was developed for conserved regions within the cyanobacterial small subunit uptake hydrogenase (hupS) gene family. These primers were used to PCR amplify partial hupS sequences from 15 cyanobacterial strains. HupS clone libraries were constructed from PCR-amplified genomic DNA and reverse-transcribed mRNA extracted from phototrophic biofilms cultivated under nitrate-limiting conditions. Partial hupS gene sequences derived from cyanobacteria, some of which were not previously known to contain hup genes were used for phylogenetic analysis. Phylogenetic trees constructed with partial hupS genes were congruent with those based on 16S rRNA genes, indicating that hupS sequences can be used to identify cyanobacteria expressing hup. Sequences from heterocystous and nonheterocystous cyanobacteria formed two separate clusters. Analysis of clone library data showed a discrepancy between the presence and the activity of cyanobacterial hupS genes in phototrophic biofilms. The results showed that the hupS gene can be used to characterize the diversity of natural populations of diazotrophic cyanobacteria, and to characterize gene expression patterns of individual species and strains.  相似文献   

16.
《Gene》1997,194(2):273-276
This report describes the amplification of upstream genomic sequences using the polymerase chain reaction (PCR) based solely on downstream DNA information from a cDNA clone. In this novel and rapid technique, genomic DNA (gDNA) is first incubated with a restriction enzyme that recognizes a site within the 5′ end of a gene, followed by denaturation and polyadenylation of its free 3′ ends with terminal transferase. The modified gDNA is then used as template for PCR using a gene-specific primer complementary to a sequence in the 3′ end of its cDNA and an anchored deoxyoligothymidine primer. A second round of PCR is then performed with a second, nested gene-specific primer and the anchor sequence primer. The resulting PCR product is cloned and its sequence determined. Three independent plant genomic clones were isolated using this method that exhibited complete sequence identity to their cDNAs and to the primers used in the amplification.  相似文献   

17.
ABSTRACT. Environmental clone libraries constructed using small subunit ribosomal RNA (rRNA) or other gene-specific primers have become the standard molecular approach for identifying microorganisms directly from their environment. This technique includes an initial polymerase chain reaction (PCR) amplification step of a phylogenetically useful marker gene using universal primers. Although it is acknowledged that such primers introduce biases, there have been few studies if any to date systematically examining such bias in eukaryotic microbes. We investigated some implications of such bias by constructing clone libraries using several universal primer pairs targeting rRNA genes. Firstly, we constructed artificial libraries using a known mix of small cultured pelagic arctic algae with representatives from five major lineages and secondly we investigated environmental samples using several primer pairs. No primer pair retrieved all of the original algae in the artificial clone libraries and all showed a favorable bias toward the dinoflagellate Polarella glacialis and a bias against the prasinophyte Micromonas and a pennate diatom. Several other species were retrieved by only one primer pair tested. Despite this, sequences from nine environmental libraries were diverse and contained representatives from all major eukaryotic clades expected in marine samples. Further, libraries from the same sample grouped together using Bray–Curtis clustering, irrespective of primer pairs. We conclude that environmental PCR-based techniques are sufficient to compare samples, but the total diversity will probably always be underestimated and relative abundance estimates should be treated with caution.  相似文献   

18.
Fecal microbiota in six elderly individuals were characterized by the 16S rDNA libraries and terminal restriction fragment length polymorphism (T-RFLP) analysis. Random clones of 16S rRNA gene sequences were isolated after PCR amplification with universal primer sets from total genomic DNA extracted from feces of three elderly individuals. These clones were partially sequenced (about 500 bp). T-RFLP analysis was performed using 16S rDNA amplified from six subjects. The lengths of the terminal restriction fragment (T-RF) were analyzed after digestion by HhaI and MspI. Among 240 clones obtained, approximately 46% belonged to 27 known species. About 54% of the other clones were 56 novel "phylotypes" (at least 98% homology of clone sequence). These libraries included 83 species or phylotypes. In addition, about 13% (30 phylotypes) of these phylotypes were newly discovered in these libraries. A large number of species that are not yet known exist in the feces of elderly individuals. 16S rDNA libraries and T-RFLP analysis revealed that the majority of bacteria were Bacteroides and relatives, Clostridium rRNA cluster IV, IX, Clostridium rRNA subcluster XIVa, and "Gammaproteobacteria". The proportion of Clostridium rRNA subcluster XIVa was lower than in healthy adults. In addition, although Ruminococcus obeum and its closely related phylotypes were detected in high frequency in healthy young subjects, hardly any were detected in our elderly individuals. "Gammaproteobacteria" were detected at high frequency.  相似文献   

19.
Investigation of viruses in the environment often requires the amplification of viral DNA before sequencing of viral metagenomes. In this study, two of the most widely used amplification methods, the linker amplified shotgun library (LASL) and multiple displacement amplification (MDA) methods, were applied to a sample from the seawater surface. Viral DNA was extracted from viruses concentrated by tangential flow filtration and amplified by these two methods. 454 pyrosequencing was used to read the metagenomic sequences from different libraries. The resulting taxonomic classifications of the viruses, their functional assignments, and assembly patterns differed substantially depending on the amplification method. Only double-stranded DNA viruses were retrieved from the LASL, whereas most sequences in the MDA library were from single-stranded DNA viruses, and double-stranded DNA viral sequences were minorities. Thus, the two amplification methods reveal different aspects of viral diversity.  相似文献   

20.
In a previous study, we analyzed the molecular diversity of Planctomycetales by PCR amplification and sequencing of 16S rRNA clone libraries generated from a municipal wastewater plant, using planctomycete-specific and universal primer sets (R. Chouari, D. Le Paslier, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir, Appl. Environ. Microbiol. 69:7354-7363, 2003). Only a small fraction (4%) of the 16S rRNA gene sequences of the digester clone library corresponded to the Planctomycetales division. Importantly, 85.9% of the digester clone sequences are grouped into two different clusters named WWE1 (81.4% of the sequences) and WWE2 (4.5%) and are distantly affiliated with unidentified bacterial sequences retrieved from a methanogenic reactor community and from a termite gut, respectively. In phylogenetic analysis using 16S rRNA gene sequence representatives of the main phylogenetic bacterial divisions, the two clusters are monophyletic, branch apart from each other, and are distantly related to Planctomycetales and other bacterial divisions. A novel candidate division is proposed for WWE1, while the WWE2 cluster strongly affiliates with the recently proposed Lentisphearae phylum. We designed and validated a 16S rRNA probe targeting WWE1 16S rRNA sequences by both fluorescent in situ hybridization (FISH) and dot blot hybridization (DBH). Results of FISH analysis show that WWE1 representative microorganisms are rods or filamentous shaped, while DBH shows that WWE1 accounts for 12% of the total bacterial rRNA within the anaerobic digester. The remaining 16S rRNA gene sequences are affiliated with Verrucomicrobia or recently described candidate divisions with no known pure culture representatives, such as OD1, BRC1, or NBL-UPA2, making up less than 3.5% of the clone library, respectively. This inventory expands the known diversity of the latter bacterial division-level lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号