首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alternative product of the human INK4a/ARF locus, p14ARF, has the potential to act as a tumour suppressor by binding to and inhibiting the p53 antagonist MDM2. Current models propose that ARF function depends on its ability to sequester MDM2 in the nucleolus. Here we describe situations in which stabilization of MDM2 and p53 occur without relocalization of endogenous MDM2 from the nucleoplasm. Conversely, forms of ARF that do not accumulate in the nucleolus retain the capacity to stabilize MDM2 and p53. We therefore propose that nucleolar localization is not essential for ARF function but may enhance the availability of ARF to inhibit MDM2.  相似文献   

2.
3.
The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent manner. Treatment of H1299 cells with nucleolar stress inducers, such as actinomycin D, 5-fluorouridine, or doxorubicin, induced the degradation of PICT1 protein. The proteasome inhibitors MG132, lactacystin, and epoxomicin blocked PICT1 degradation, whereas the inhibition of E1 ubiquitin-activating enzyme by a specific inhibitor and genetic inactivation fail to repress PICT1 degradation. In addition, the 20 S proteasome was able to degrade purified PICT1 protein in vitro. We also found a PICT1 mutant showing nucleoplasmic localization did not undergo nucleolar stress-induced degradation, although the same mutant underwent in vitro degradation by the 20 S proteasome, suggesting that nucleolar localization is indispensable for the stress-induced PICT1 degradation. These results suggest that PICT1 employs atypical proteasome-mediated degradation machinery to sense nucleolar stress within the nucleolus.  相似文献   

4.
The INK4a locus on chromosome 9p21 encodes two structurally distinct tumor suppressor proteins, p16(INK4a) and the alternative reading frame protein, ARF (p19(ARF) in mouse and p14(ARF) in human). Each of these proteins has a role in senescence of primary cells and activates pathways for cell cycle control and tumor suppression. The current prevailing model proposes that p19(ARF) activates p53 function by antagonizing its degradation by MDM2. It was, however, recently shown that stabilization of p53 by p14(ARF) occurs independent of the relocalization of MDM2 to the nucleolus. We have identified a novel collaborator of ARF, CARF. It co-localizes and interacts with ARF in the nucleolus. We demonstrate that CARF is co-regulated with ARF, cooperates with it in activating p53, and thus acts as a novel component of the ARF-p53-p21 pathway.  相似文献   

5.
Several studies have shown that ribosomal proteins (RPs) are important mediators of p53 activation in response to nucleolar disruption; however, the pathways that control this signalling function of RPs are currently unknown. We have recently shown that RPs are targets for the ubiquitin‐like molecule NEDD8, and that NEDDylation protects RPs from destabilization. Here, we identify NEDD8 as a crucial regulator of L11 RP signalling to p53. A decrease in L11 NEDDylation during nucleolar stress causes relocalization of L11 from the nucleolus to the nucleoplasm. This not only provides the signal for p53 activation, but also makes L11 susceptible to degradation. Mouse double minute 2 (MDM2) ‐mediated NEDDylation protects L11 from degradation and this is required for p53 stabilization during nucleolar stress. By controlling the correct localization and stability of L11, NEDD8 acts as a crucial, new regulator of nucleolar signalling to p53.  相似文献   

6.
Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization   总被引:8,自引:0,他引:8  
Stabilization and overexpression are hallmarks of mutant p53 found in nearly 50% of human tumors. Mutations in the conformation-sensitive core domain of p53 often lead to association with molecular chaperones such as hsp70 and hsp90. Inhibition of hsp90 function accelerates mutant p53 degradation. We recently found that expression of p53 core domain mutants inhibits MDM2 degradation, suggesting that mutant p53 can modulate MDM2 functions. In this report, we show that mutant p53 mediates formation of MDM2-p53-hsp90 complexes. Release of MDM2 from the p53-hsp90 complex after DNA damage restores MDM2 but not p53 turnover, whereas dissociation of hsp90 by geldanamycin increases the degradation of both MDM2 and mutant p53. Mutant p53 degradation after hsp90 inhibition requires MDM2 expression. The interaction between MDM2 and hsp90 is disrupted by the 2A10 antibody, which recognizes a site on MDM2 important for binding to alternative reading frame (ARF). Expression of mutant p53 prevents MDM2 from binding ARF and accumulating in the nucleolus in an hsp90-dependent fashion. These results suggest that hsp90 recruited by mutant p53 conceals the ARF-binding site on MDM2 and inhibits its ubiquitin-protein isopeptide ligase function, resulting in the stabilization of both mutant p53 and MDM2.  相似文献   

7.
The human I-mfa domain-containing protein (HIC) mRNA produces two protein isoforms, HIC p32 and p40, synthesized from alternative translational initiations. p32 translation is initiated from a standard AUG codon and p40 is an N-terminal extension of p32 generated from an upstream GUG codon. The two isoforms show different subcellular localization: p32 is distributed throughout the cytoplasm whereas p40 can be found both in the cytoplasm and the nucleolus. To investigate the possibility that p40 contains a nucleolus targeting sequence in its N-terminal region, COS cells were transfected with an eukaryotic expression vector coding for green fluorescent protein (GFP) fused to the p40 N terminus. The localization of this fusion protein in the nucleolus indicated that the N-terminal amino acids of p40 probably contain a nucleolar localization signal (NoLS). To find the structural motifs required for nucleolar localization of p40, deletion mutants were expressed in COS cells as fusion polypeptides with GFP. We defined a domain of 19 amino acids near the N terminus that contains an arginine-rich subdomain that conforms to other known NoLS. To demonstrate that this sequence is an authentic NoLS, the sequence was fused to GFP. This fusion protein was observed to migrate into the nucleolus. Taken together, our studies demonstrate that p40 contains a NoLS.  相似文献   

8.
Y Zhang  Y Xiong 《Molecular cell》1999,3(5):579-591
The mammalian ARF-INK4a locus uniquely encodes two cell cycle inhibitors by using separate promoters and alternative reading frames. p16INK4a maintains the retinoblastoma protein in its growth suppressive state while ARF stabilizes p53. We report that human ARF protein predominantly localizes to the nucleolus via a sequence within the exon 2-encoded C-terminal domain and is induced to leave the nucleolus by MDM2. ARF forms nuclear bodies with MDM2 and p53 and blocks p53 and MDM2 nuclear export. Tumor-associated mutations in ARF exon 2 disrupt ARF's nucleolus localization and reduce ARF's ability to block p53 nuclear export and to stabilize p53. Our results suggest an ARF-regulated MDM2-dependent p53 stabilization and link the human tumor-associated mutations in ARF with a functional alteration.  相似文献   

9.
10.
The nucleolus directly regulates p53 export and degradation   总被引:1,自引:0,他引:1  
The correlation between stress-induced nucleolar disruption and abrogation of p53 degradation is evident after a wide variety of cellular stresses. This link may be caused by steps in p53 regulation occurring in nucleoli, as suggested by some biochemical evidence. Alternatively, nucleolar disruption also causes redistribution of nucleolar proteins, potentially altering their interactions with p53 and/or MDM2. This raises the fundamental question of whether the nucleolus controls p53 directly, i.e., as a site where p53 regulatory processes occur, or indirectly, i.e., by determining the cellular localization of p53/MDM2-interacting factors. In this work, transport experiments based on heterokaryons, photobleaching, and micronucleation demonstrate that p53 regulatory events are directly regulated by nucleoli and are dependent on intact nucleolar structure and function. Subcellular fractionation and nucleolar isolation revealed a distribution of ubiquitylated p53 that supports these findings. In addition, our results indicate that p53 is exported by two pathways: one stress sensitive and one stress insensitive, the latter being regulated by activities present in the nucleolus.  相似文献   

11.
Reef S  Kimchi A 《Autophagy》2008,4(7):866-869
ARF mRNA encodes two distinct proteins, the nucleolar p19(ARF), and a shorter mitochondrial isoform, named smARF. Inappropriate proliferative signals generated by proto-oncogenes, such as c-Myc and E2F1, can elevate both p19(ARF) and smARF proteins. The two ARF isoforms differ not only in their localization but also in their functions. Nucleolar p19(ARF) inhibits cell growth mainly by activating p53 or by inhibiting ribosomal biogenesis. In contrast, mitochondrial smARF can induce dissipation of the mitochondrial membrane potential and autophagy in a p53 independent manner. Recently, it was proposed by Abida et al., that similar to smARF, the nucleolar p19(ARF) can also induce p53 independent autophagy, but in contrast to smARF it does so from within the nucleolus. Our current work shown here indicates, however, that if the ectopic expression of p19(ARF) is restricted to the nucleolus it cannot induce autophagic vesicle formation. Only upon extreme overexpression, when p19(ARF) is localized to extra nuclear compartments, can it trigger p53-independent autophagic vesicle formation. Thus, our experiments indicate that the nucleolar p19(ARF) is incapable of inducing autophagy from within the nucleolus.  相似文献   

12.
13.
14.
Wang X  Arooz T  Siu WY  Chiu CH  Lau A  Yamashita K  Poon RY 《FEBS letters》2001,490(3):202-208
  相似文献   

15.
The p53-mediated pathway cell cycle arrest and apoptosis is central to cancer and an important point of focus for therapeutics development. The p14ARF ("ARF") tumor suppressor induces the p53 pathway in response to oncogene activation or DNA damage. However, ARF is predominantly nucleolar in localization and engages in several interactions with nucleolar proteins, whereas p53 is nucleoplasmic. This raises the question as to how ARF initiates its involvement in the p53 pathway. We have found that UV irradiation of cells disrupts the interaction of ARF with two of its nucleolar binding partners, B23(NPM, nucleophosmin, NO38, numatrin) and topoisomerase I, and promotes an immediate and transient subnuclear redistribution of ARF to the nucleoplasm, where it can engage the p53 pathway (Lee et al, Cancer Research 65:9834-42; 2005). The results support a model in which the nucleolus serves as a p53 upstream sensor of cellular stress, and add to a growing body of evidence that nucleolar sequestration of ARF prevents activation of p53. The results also have therapeutic implications for therapies based on exploiting p53 and other cellular stress response pathways to suppress cancer.  相似文献   

16.
The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike nucleoplasmic localized MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus and the molecular target and mechanism of ARF's p53-independent function remain both controversial and a fertile field of research. Recent study has identified the nucleolar protein B23 as a target of ARF for implementing its growth inhibitory function. The ability of ARF to block cell cycle progression through the MDM2-p53 pathway and to suppress ribosomal biogenesis through B23 suggest a role for ARF in coordinating inhibitions of growth and proliferation.  相似文献   

17.
The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike the nucleoplasmic MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus, the molecular target, and the mechanism of its p53-independent function remains unclear. Here we show that ARF interacts with B23, a multifunctional nucleolar protein involved in ribosome biogenesis, and promotes its polyubiquitination and degradation. Overexpression of B23 induces a cell cycle arrest in normal fibroblasts, whereas in cells lacking p53 it promotes S phase entry. Conversely, knocking down B23 inhibits the processing of preribosomal RNA and induces cell death. Further, oncogenic Ras induces B23 only in ARF null cells, but not in cells that retain wild-type ARF. Together, our results reveal a molecular mechanism of ARF in regulating ribosome biogenesis and cell proliferation via inhibiting B23, and suggest a nucleolar role of ARF in surveillance of oncogenic insults.  相似文献   

18.
19.
We here show a new relationship between the human p14ARF oncosuppressor and the MDM2 oncoprotein. MDM2 overexpression in various cancer cell lines causes p14ARF reduction inducing its degradation through the proteasome. The effect does not require the ubiquitin ligase activity of MDM2 and preferentially occurs in the cytoplasm. Interestingly, treatment with inhibitors of the PKC (Protein Kinase C) pathway and use of p14ARF phosphorylation mutants indicate that ARF phosphorylation could play a role in MDM2 mediated ARF degradation reinforcing our previous observations that ARF phosphorylation influences its stability and biological activity. Our study uncovers a new potentially important mechanism through which ARF and MDM2 can counterbalance each other during the tumorigenic process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号