首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C-terminal regions of the heterotrimeric G protein alpha-subunits play key roles in selective activation of G proteins by their cognate receptors. In this study, mutant G(s)alpha proteins with substitutions by C-terminal residues of transducin (G(t)alpha) were analyzed for their interaction with light-activated rhodopsin (R*) to delineate the critical determinants of the G(t)alpha/R* coupling. In contrast to G(s)alpha, a chimeric G(s)alpha/G(t)alpha protein containing only 11 C-terminal residues from transducin was capable of binding to and being potently activated by R*. Our results suggest that Cys(347) and Gly(348) are absolutely essential, whereas Asp(346) is more modestly involved in the G(t) activation by R*. In addition, the analysis of the intrinsic nucleotide exchange in mutant G(s)alpha indicated an interaction between the C terminus and the switch II region in G(t)alpha.GDP. Mutant G(s)alpha containing the G(t)alpha C terminus and substitutions of Asn(239) and Asp(240) (switch II) by the corresponding G(t)alpha residues, Glu(212) and Gly(213), displayed significant reductions in spontaneous guanosine 5'-O-(3-thiotriphosphate)-binding rates to the levels approaching those in G(t)alpha. Communication between the C terminus and switch II of G(t)alpha does not appear essential for the activational coupling between G(t) and R*, but may represent one of the mechanisms by which Galpha subunits control intrinsic nucleotide exchange.  相似文献   

2.
A panel of monoclonal antibodies has been developed against the T alpha, T beta and T gamma subunits of bovine transducin. Two anti-T alpha antibodies from this panel (TF15 and TF16) and a third one (4A) against frog T alpha (Witt, P. L., Hamm, H. E., and Bownds, M. D. (1984) J. Gen. Physiol. 84, 251-263) were characterized. Each of these monoclonal antibodies recognizes a different region of T alpha and has a specific effect on the function of transducin. The binding of TF15 is reversibly enhanced by treating T alpha with either 1 M guanidinium chloride or, to a smaller extent, by the removal of bound guanine nucleotide. Its epitope is located in a 12-kDa tryptic fragment containing the binding site for the guanine moiety of GTP. Taken together, these results support previous observations that the conformation of T alpha is modulated by the occupancy of the guanine nucleotide binding site. In contrast to TF15, TF16 recognizes only the native form of T alpha. Its epitope resides within the central portion of the T alpha molecule. While T alpha-bound TF16 does not inhibit either pertussis toxin-catalyzed ADP-ribosylation, rhodopsin binding, or transducin subunit interaction, it blocks both the light-activated uptake of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the GTP-dependent elution of transducin from photolyzed rhodopsin. These effects are unlikely to be caused by the occupation of the guanine nucleotide binding site by TF16 because this antibody quantitatively precipitates T alpha-GTP gamma S. We propose that bound TF16 locks T alpha in a conformation that prevents the entrance of guanine nucleotide and favors T beta gamma association. In contrast to TF16, the epitope of 4A was mapped to the amino-terminal region of T alpha. This monoclonal antibody blocks pertussis toxin-catalyzed ADP-ribosylation, GTP gamma S uptake, and T alpha-T beta gamma association. Moreover, the binding site for 4A becomes inaccessible when transducin binds to photolyzed rhodopsin. These results suggest that the inhibitory effects of 4A are due to a simultaneous steric blockage of both the interaction of T alpha with T beta gamma and their binding to photolyzed rhodopsin. The results obtained from these studies are correlated with the structure and function of T alpha.  相似文献   

3.
Transducin (T alpha beta gamma), the heterotrimeric GTP-binding protein that interacts with photoexcited rhodopsin (Rh*) and the cGMP-phosphodiesterase (PDE) in retinal rod cells, is sensitive to cholera (CTx) and pertussis toxins (PTx), which catalyze the binding of an ADP-ribose to the alpha subunit at Arg174 and Cys347, respectively. These two types of ADP-ribosylations are investigated with transducin in vitro or with reconstituted retinal rod outer-segment membranes. Several functional perturbations inflicted on T alpha by the resulting covalent modifications are studied such as: the binding of T alpha to T beta gamma to the membrane and to Rh*; the spontaneous or Rh*-catalysed exchange of GDP for GTP or guanosine 5-[gamma-thio]triphosphate (GTP[gamma S]), the conformational switch and activation undergone by transducin upon this exchange, the activation of T alpha GDP by fluoride complexes and the activation of the PDE by T alpha GTP. ADP-ribosylation of transducin by CTx requires the GTP-dependent activation of ADP-ribosylation factors (ARF), takes place only on the high-affinity, nucleotide-free complex, Rh*-T alpha empty-T beta gamma and does not activate T alpha. Subsequent to CTx-catalyzed ADP-ribosylation the following occurs: (a) addition of GDP induces the release from Rh* of inactive CTxT alpha GDP (CTxT alpha, ADP-ribosylated alpha subunit of transducin) which remains associated to T beta gamma; (b) CTxT alpha GDP-T beta gamma exhibits the usual slow kinetics of spontaneous exchange of GDP for GTP[gamma S] in the absence of Rh*, but the association and dissociation of fluoride complexes, which act as gamma-phosphate analogs, are kinetically modified, suggesting that the ADP-ribose on Arg174 specifically perturbs binding of the gamma-phosphate in the nucleotide site; (c) CTxT alpha GDP-T beta gamma can still couple to Rh* and undergo fast nucleotide exchange; (d) CTxT alpha GTP[gamma S] and CTxT alpha GDP-AlFx (AlFx, Aluminofluoride complex) activate retinal cGMP-phosphodiesterase (PDE) with the same efficiency as their unmodified counterparts, but the kinetics and affinities of fluoride activation are changed; (e) CTxT alpha GTP hydrolyses GTP more slowly than unmodified T alpha GTP, which entirely accounts for the prolonged action of CTxT alpha GTP on the PDE; (f) after GTP hydrolysis, CTxT alpha GDP reassociates to T beta gamma and becomes inactive. Thus, CTx catalyzed ADP-ribosylation only perturbs in T alpha the GTP-binding domain, but not the conformational switch nor the domains of contact with the T beta gamma subunit, with Rh* and with the PDE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The bacterial toxins, choleragen and pertussis toxin, inhibit the light-stimulated GTPase activity of bovine retinal rod outer segments by catalysing the ADP-ribosylation of the alpha-subunit (T alpha) of transducin [Abood, Hurley, Pappone, Bourne & Stryer (1982) J. Biol. Chem. 257, 10540-10543; Van Dop, Yamanaka, Steinberg, Sekura, Manclark, Stryer & Bourne (1984) J. Biol. Chem. 259, 23-26]. Incubation of retinal rod outer segments with NAD+ and a purified NAD+:arginine ADP-ribosyltransferase from turkey erythrocytes resulted in approx. 60% inhibition of GTPase activity. Inhibition was dependent on both enzyme and NAD+, and was potentiated by the non-hydrolysable GTP analogues guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5'-[beta gamma-methylene]triphosphate (p[CH2]ppG). The transferase ADP-ribosylated both the T alpha and T beta subunits of purified transducin. T alpha (39 kDa), after ADP-ribosylation, migrated as two distinct peptides with molecular masses of 42 kDa and 46 kDa on SDS/polyacrylamide-gel electrophoresis. T beta (36 kDa), after ADP-ribosylation, migrated as a 38 kDa peptide. With purified transducin subunits, it was observed that the GTPase activity of ADP-ribosylated T alpha, reconstituted with unmodified T beta gamma and photolysed rhodopsin, was decreased by 80%; conversely, reconstitution of T alpha with ADP-ribosyl-T beta gamma resulted in only a 19% inhibition of GTPase. Thus ADP-ribosylation of T alpha, the transducin subunit that contains the guanine nucleotide-binding site, has more dramatic effects on GTPase activity than does modification of the critical 'helper subunits' T beta gamma. To elucidate the mechanism of GTPase inhibition by transferase, we studied the effect of ADP-ribosylation on p[NH]pp[3H]G binding to transducin. It was shown previously that modification of transducin by choleragen, which like transferase ADP-ribosylates arginine residues, did not affect guanine nucleotide binding. ADP-ribosylation by the transferase, however, decreased p[NH]pp[3H]G binding, consistent with the hypothesis that choleragen and transferase inhibit GTPase by different mechanisms.  相似文献   

5.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

6.
Photolyzed rhodopsin acts in a catalytic manner to mediate the exchange of GTP for GDP bound to transducin. We have analyzed the steady-state kinetics of this activation process in order to determine the molecular mechanism of interactions between rhodopsin, transducin, and guanine nucleotides. Initial velocities (Vo) of the exchange reaction catalyzed by rhodopsin were measured for various transducin concentrations at several fixed levels of the GTP analog, [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The initial rate data analysis rigorously demonstrates that rhodopsin mediates the activation of transducin by a double-displacement catalytic mechanism. The Michaelis-Menten curves determined as a function of [transducin] reveal remarkable allosteric behavior; analysis of this data yields a Hill coefficient of 2. Lineweaver-Burk plots of Vo-1 versus [transducin]-1 display curvilinearity indicative of positive cooperativity and a series of parallel lines are generated by plotting Vo-1 as a function of [transducin]-2. The plots of Vo-1 versus [GTP gamma S]-1 show no evidence of allosterism and are a parallel series. Furthermore, the allosteric behavior observed in the activation of transducin is also witnessed in the rhodopsin-catalyzed guanine nucleotide exchange of the G protein's purified alpha subunit in the absence of the beta X gamma subunit complex. The latter observation implies that the molecular basis for allosterism in the activation process resides in the interactions between the photoreceptor and transducin's alpha subunit.  相似文献   

7.
L Ramdas  R M Disher  T G Wensel 《Biochemistry》1991,30(50):11637-11645
Transducin, the signal coupling protein of retinal rod photoreceptor cells, is one of a family of G proteins that can be inactivated by pertussis toxin. We have investigated the nature of this inactivation in order to determine (1) whether it requires the toxin-catalyzed transfer of ADP-ribose from NAD+ to cysteine-347 of the alpha subunit and (2) whether it involves locking the alpha subunit in the inactive conformation characteristic of its GDP-bound state, or is limited to disruption of binding to photoexcited rhodopsin (R*). Our results indicate that all observed effects of pertussis toxin treatment, including a shift in the electrophoretic mobility of transducin's alpha subunit and functional inactivation, require NAD+ and that the appearance of the shift parallels incorporation of ADP-ribose. We have also found that, apart from interactions with photoexcited rhodopsin, the functional properties of ADP-ribosylated transducin are essentially the same as those of unmodified transducin. Normal spontaneous nucleotide exchange kinetics and the ability to activate cGMP phosphodiesterase are preserved following quantitative ADP-ribosylation, as are the abilities to hydrolyze GTP, to bind to a dye affinity column, and to display enhanced fluorescence upon addition of Al3+ and F-. Thus, ADP-ribosylation merely blocks catalysis of transducin nucleotide exchange by R* and does not lock transducin in an inactive state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
An agonist-bound G protein-coupled receptor (GPCR) induces a GDP/GTP exchange on the G protein alpha-subunit (G alpha) followed by the release of G alpha GTP and G beta gamma which, subsequently, activate their targets. The C-terminal regions of G alpha subunits constitute a major receptor recognition domain. In this study, we tested the hypothesis that the GPCR-induced conformational change is communicated from the G alpha C-terminus, via the alpha 5 helix, to the nucleotide-binding beta 6/alpha 5 loop causing GDP release. Mutants of the visual G protein, transducin, with a modified junction of the C-terminus were generated and analyzed for interaction with photoexcited rhodopsin (R*). A flexible linker composed of five glycine residues or a rigid three-turn alpha-helical segment was inserted between the 11 C-terminal residues and the alpha 5 helix of G alpha(t)-like chimeric G alpha, G alpha(ti). The mutant G alpha subunits with the Gly-loop (G alpha(ti)L) and the extended alpha 5 helix (G alpha(ti)H) retained intact interactions with G beta gamma(t), and displayed modestly reduced binding to R*. G alpha(ti)H was capable of efficient activation by R*. In contrast, R* failed to activate G alpha(ti)L, suggesting that the Gly-loop absorbs a conformational change at the C-terminus and blocks G protein activation. Our results provide evidence for the role of G alpha C-terminus/alpha 5 helix/beta 6/alpha 5 loop route as a dominant channel for transmission of the GPCR-induced conformational change leading to G protein activation.  相似文献   

9.
The activation of transducin (T) by photoexcited rhodopsin (R*) is kinetically dissected within the framework of Michaelis-Menten enzymology, taking transducin as substrate of the enzyme R*. The light scattering "release" signal (Vuong, T.M., M. Chabre, and L. Stryer, 1984, Nature (Lond.). 311:659-661) was used to monitor the kinetics of transducin activation at 20 degrees C. In addition, the influence of nonuniform distributions of R* on these activation kinetics is also explored. Sinusoidal patterns of R* were created with interference fringes from two crossed laser beams. Two characteristic times were extracted from the Michaelis-Menten analysis: t(form), the diffusion-related time needed to form the enzyme-substrate R*-transducin is 0.25 +/- 0.1 ms, and T(cat), the time taken by R* to perform the chemistry of catalysis on transducin is 1.2 +/- 0.2 ms, in the absence of added guanosine diphosphate (GDP) and at saturating levels of guanosine triphosphate (GTP). With t(form) being but 20% of the total activation time t(form) + t(cat), transducin activation by R* is not limited by lateral diffusion. This is further borne out by the observation that uniform and sinusoidal patterns of R* elicited release signals of indistinguishable kinetics. When (GDP) = (GTP) = 500 microM, t(cat) is lengthened twofold. As the in vivo GDP and GTP levels are comparable, the exchange of nucleotides may well be the rate-limiting process.  相似文献   

10.
In the first step of the visual transduction cascade a photoexcited rhodopsin molecule, R*ret, binds to a GDP-carrying transducin molecule, TGDP. The R*-T interaction causes the opening of the nucleotide site in T and catalyzes the GDP/GTP exchange by allowing the release of the GDP. We have studied the influences on this R*-T transitory complex of the occupancies of the nucleotide site in T and the retinal site in rhodopsin. After elimination of the GDP released from the bound transducin, the complex, named R*ret-te (ret for retinal present, e for nucleotide site empty) remains stabilized almost indefinitely in a medium whose ionic composition is close to physiological. In this complex the bound Te retains a lasting ability to interact with GDP or GTP, and R*ret remains spectroscopically in the meta-II state, by contrast with free R*ret which decays to opsin and free retinal. Hence the R*-T interaction which opens the nucleotide site in T conversely blocks the retinal site in R*ret. Upon prolonged incubation in a low-ionic-strength medium the R*ret-Tc complex dissociates partially, but the liberated Te is then unable to rebind GDP or GTP, even in the presence of R*ret, it is probably denaturated. Upon treatment of the R*ret-Te complex by a high concentration of hydroxylamine, the retinal can be removed from the rhodopsin. The Re-Te complex remains stable and the complexed transducin keeps its capacity to bind GTP. TGTP then dissociates from Re. The liberated Re loses its capacity to interact with a new transducin. These data are integrated into a discussion of the development of the cascade. We stress that affinities, i.e. dissociation equilibrium constants, are insufficient to describe the flow of reactions triggered by one R*ret molecule. It depends on a few critical rapid binding and dissociation processes, and is practically insensitive to other slow ones, hence to the values of affinities that express only the ratio of kinetics constants. The effect of the R*-T interaction on the retinal site in rhodopsin is analogous to the effect of the binding of a G-protein on the apparent affinity of a receptor for its agonist.  相似文献   

11.
To probe the interaction between transducin (G(t)) and photoactivated rhodopsin (R*), 14 analog peptides were designed and synthesized restricting the backbone of the R*-bound structure of the C-terminal 11 residues of G(t)alpha derived by transferred nuclear Overhauser effect (TrNOE) NMR. Most of the analogs were able to bind R*, supporting the TrNOE structure. Improved affinities of constrained peptides indicated that preorganization of the bound conformation is beneficial. Cys347 was found to be a recognition site; particularly, the free sulfhydryl of the side chain seems to be critical for R* binding. Leu349 was another invariable residue. Both Ile and tert-leucine (Tle) mutations for Leu349 significantly reduced the activity, indicating that the Leu side chain is in intimate contact with R*. The structure of R* was computer generated by moving helix 6 from its position in the crystal structure of ground-state rhodopsin (R) based on various experimental data. Seven feasible complexes were found when docking the TrNOE structure with R* and none with R. The analog peptides were modeled into the complexes, and their binding affinities were calculated. The predicted affinities were compared with the measured affinities to evaluate the modeled structures. Three models of the R*/G(t)alpha complex showed strong correlation to the experimental data.  相似文献   

12.
P M Guy  J G Koland  R A Cerione 《Biochemistry》1990,29(30):6954-6964
The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues [cf. Phillips and Cerione (1988) J. Biol. Chem. 263, 15498-15505]. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on [rhodopsin], while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high [rhodopsin], the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin. The results of this modeling suggest the following points: (1) the dependency of the activation-deactivation cycle on [rhodopsin] can be described by a simple dose response profile; (2) the rate of the rhodopsin-stimulated activation of multiple alpha T(GDP) molecules is dependent on [rhodopsin] and when [alpha T] greater than [rhodopsin], the activation of the total alpha T pool may be limited by the rate of dissociation of rhodopsin from the activated alpha T(GTP) species; and (3) under conditions of optimal rhodopsin-alpha T coupling (i.e., high [rhodopsin]), the cycle is limited by GTP hydrolysis with the rate of Pi release, or any ensuing conformational change, being at least as fast as the hydrolytic event.  相似文献   

13.
Abdulaev NG  Ngo T  Ramon E  Brabazon DM  Marino JP  Ridge KD 《Biochemistry》2006,45(43):12986-12997
Heterotrimeric G-protein activation by a G-protein-coupled receptor (GPCR) requires the propagation of structural signals from the receptor-interacting surfaces to the guanine nucleotide-binding pocket. To probe conformational changes in the G-protein alpha-subunit (G(alpha)) associated with activated GPCR (R*) interactions and guanine nucleotide exchange, high-resolution solution NMR methods are being applied in studying signaling of the G-protein, transducin, by light-activated rhodopsin. Using these methods, we recently demonstrated that an isotope-labeled G(alpha) reconstituted heterotrimer forms functional complexes under NMR experimental conditions with light-activated, detergent-solubilized rhodopsin and a soluble mimic of R*, both of which trigger guanine nucleotide exchange [Ridge, K. D., et al. (2006) J. Biol. Chem. 281, 7635-7648]. Here, it is shown that both light-activated rhodopsin and the soluble mimic of R form trapped intermediate complexes with a GDP-released "empty pocket" state of the heterotrimer in the absence of GTP (or GTPgammaS). In contrast to guanine nucleotide-bound forms of G(alpha), the NMR spectra of the GDP-released, R-bound empty pocket state of G(alpha) display severe line broadening suggestive of a dynamic intermediate state. Interestingly, the conformation of a GDP-depleted, Mg(2+)-bound state of G(alpha) generated in a manner independent of R* does not exhibit a similar degree of line broadening but rather appears structurally similar to the GDP/Mg(2+)-bound form of the protein. Taken together, these results suggest that R*-mediated changes in the receptor-interacting regions of G(alpha), and not the absence of bound guanine nucleotide, are the predominant factors which dictate G(alpha) conformation and dynamics in this R*-bound state of the heterotrimer.  相似文献   

14.
Transducin is a multi-subunit guanine-nucleotide-binding protein that mediates signal coupling between rhodopsin and cyclic GMP phosphodiesterase in retinal rod outer segments. Whereas the T alpha subunit of transducin binds guanine nucleotides and is the activator of the phosphodiesterase, the T beta gamma subunit may function to link physically T alpha with photolysed rhodopsin. In order to determine the binding sites of rhodopsin to transducin, we have synthesized eight peptides (Rhod-1 etc.) that correspond to the C-terminal regions of rhodopsin and to several external and one internal loop region. These peptides were tested for their inhibition of restored GTPase activity of purified transducin reconstituted into depleted rod-outer-segment disc membranes. A marked inhibition of GTPase activity was observed when transducin was pre-incubated with peptides Rhod-1, Rhod-2 and Rhod-3. These peptides correspond to opsin amino acid residues 332-339, 324-331 and 317-321 respectively. Peptides corresponding to the three external loop regions or to the C-terminal residues 341-348 did not inhibit reconsituted GTPase activity. Likewise, Rhod-8, a peptide corresponding to an internal loop region of rhodopsin, did not inhibit GTPase activity. These findings support the concept that these specific regions of the C-terminus of rhodopsin serve as recognition sites for transducin.  相似文献   

15.
The visual GTP-binding protein, transducin, couples light-activated rhodopsin (R*) with the effector enzyme, cGMP phosphodiesterase in vertebrate photoreceptor cells. The region corresponding to the alpha4-helix and alpha4-beta6 loop of the transducin alpha-subunit (Gtalpha) has been implicated in interactions with the receptor and the effector. Ala-scanning mutagenesis of the alpha4-beta6 region has been carried out to elucidate residues critical for the functions of transducin. The mutational analysis supports the role of the alpha4-beta6 loop in the R*-Gtalpha interface and suggests that the Gtalpha residues Arg310 and Asp311 are involved in the interaction with R*. These residues are likely to contribute to the specificity of the R* recognition. Contrary to the evidence previously obtained with synthetic peptides of Gtalpha, our data indicate that none of the alpha4-beta6 residues directly or significantly participate in the interaction with and activation of phosphodiesterase. However, Ile299, Phe303, and Leu306 form a network of interactions with the alpha3-helix of Gtalpha, which is critical for the ability of Gtalpha to undergo an activational conformational change. Thereby, Ile299, Phe303, and Leu306 play only an indirect role in the effector function of Gtalpha.  相似文献   

16.
V N Hingorani  Y Ho 《Biochemistry》1987,26(6):1633-1639
Fluorescein 5'-isothiocyanate (FITC) was used to modify the lysine residues of bovine transducin (T), a GTP-binding protein involved in phototransduction of rod photoreceptor cells. The incorporation of FITC showed a stoichiometry of approximately 1 mol of FITC/mol of transducin. The labeling was specific for the T alpha subunit. There was no significant incorporation on the T beta gamma subunit. The modification had no effect on the transducin-rhodopsin interaction or on the binding of guanosine 5'-(beta, gamma-imidotriphosphate) [Gpp(NH)p] to transducin in the presence of photolyzed rhodopsin. The dissociation of the FITC-transducin-Gpp(NH)p complex from rhodopsin membrane remained unchanged. However, the intrinsic GTPase activity of T alpha and its ability to activate the cGMP phosphodiesterase were diminished by FITC modification. The rate of FITC labeling of the transducin-Gpp(NH)p complex was about 3-fold slower than that of transducin. Limited tryptic digestion and peptide mapping were used to localize the FITC labeling site. The majority of the FITC label was on the 23-kilodalton fragment, and a minor amount was on the 9-kilodalton fragment of the T alpha subunit. These results indicate that FITC labeling does not alter the activation of transducin by photolyzed rhodopsin but does affect the GTP hydrolytic activity as well as the GTP-induced conformational change of T alpha, which ultimately leads to the activation of cGMP phosphodiesterase.  相似文献   

17.
Transducin, a guanine nucleotide-binding protein consisting of two subunits (T alpha and T beta gamma), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T alpha subunit is an activator of the phosphodiesterase, and the function of the T beta gamma subunit is to physically link T alpha with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T alpha has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T alpha with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p) and T beta gamma were present at concentrations equal to that of T alpha and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T alpha X Gpp(NH)p, T beta gamma, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T alpha coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 X 10(-3)/s, which was 22-fold slower than the rate for the unmodified transducin.  相似文献   

18.
In the presence of a photobleaching intermediate of unphosphorylated or phosphorylated rhodopsin (Rh*), the binding of GppNHp to transducin was measured with or without arrestin for elucidation of the shut-off mechanism of the visual transduction process in bovine rod outer segments. The ability of Rh* to catalyze the formation of the transducin-GppNHp complex in the absence of arrestin was independent of the degree of phosphorylation of Rh*. Furthermore, the catalyzing ability of the phosphorylated Rh* was not reduced by the addition of arrestin. These observations indicate that the interaction between phosphorylated Rh* and transducin was not inhibited by arrestin. Thus, the hypothesis was not supported that the PDE shut-off process is a simple competition between transducin and arrestin for binding to phosphorylated Rh*.  相似文献   

19.
The first stage of amplification in the cyclic GMP cascade in bovine retinal rod is carried out by transducin, a guanine nucleotide regulatory protein consisting of two functional subunits, T alpha (Mr approximately 39,000) and T beta gamma (Mr approximately 36,000 and approximately 10,000). Limited trypsin digestion of the T beta gamma subunit converted the beta polypeptide to two stable fragments (Mr approximately 26,000 and approximately 14,000). The GTPase and Gpp(NH)p binding activities were not significantly affected by the cleavage. Trypsin digestion of the T alpha subunit initially removed a small segment from the polypeptide terminus and resulted in the formation of a single 38,000-Da fragment. When this fragment was recombined with the intact T beta gamma subunit in the presence of membranes containing photolyzed rhodopsin, the reconstituted transducin exhibited greatly reduced GTPase and Gpp(NH)p binding activities. The loss in activities was due to the inability of the cleaved T alpha to bind to the photolyzed rhodopsin. Prolonged digestion converted the 38,000-Da fragment to a transient 32,000-Da fragment and then to two stable 23,000-Da and 12,000-Da fragments. The cleavage of the 32,000-Da fragment, however, can be blocked by bound Gpp(NH)p. The 32,000-Da fragment contains the Gpp(NH)p binding site and retains the ability to activate phosphodiesterase. These results indicate that the guanine nucleotide binding and rhodopsin binding sites are located in topologically distinct regions of the T alpha subunit and proved evidence that a large conformational transition of the molecule occurs upon the conversion of the bound GDP to GTP.  相似文献   

20.
Pertussis toxin catalyzes the transfer of ADP-ribose from NAD to the guanine nucleotide-binding regulatory proteins Gi, Go, and transducin. Based on a partial amino acid sequence for a tryptic peptide of ADP-ribosylated transducin, asparagine had been characterized as the site of pertussis toxin-catalyzed ADP-ribosylation. Subsequently, cDNA data for the alpha subunit of transducin indicated that the putative asparagine residue was, in fact, not present in the protein. To determine the amino acid that served as the ADP-ribose acceptor, radiolabel from [adenine-U-14C]NAD was incorporated, in the presence of pertussis toxin, into the alpha subunit of transducin (0.3 mol/mol). An ADP-ribosylated, tryptic peptide was purified and fully sequenced by automated Edman degradation. The amino acid sequence, Glu-Asn 343-Leu-Lys-Asp 346-X-Gly 348-Leu-Phe, corresponds to the cDNA sequence coding the carboxyl-terminal nonapeptide, Glu 342-Phe 350, which includes by cDNA sequence cysteine at position 347. Neither Asn 343 nor Asp 346 appeared to be modified; residue 347 adhered to the sequencing resin. Cysteine, the missing residue, was eluted from the sequencing resin with acetic acid along with 76% of the peptide-associated radioactivity, half of which, presumably ADP-ribosylcysteine, eluted from an anion exchange column between NAD and ADP-ribose; the other half had a retention time corresponding to 5'-AMP. We conclude that Cys 347 and not Asn 343 or Asp 346 is the site of pertusis toxin-catalyzed ADP-ribosylation in transducin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号