首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of analogues of Arg-Gly-Asp tripeptide, the common structural element of most of the integrin receptor ligands, possessing different conformational features for the interaction with platelet receptors, were synthesized by the methods of conventional peptide chemistry for use in the search for antithrombotic agents. The distance between the guanidine group of Arg and the beta-carboxyl group of Asp was shown to affect the antiaggregative activity. A potent inhibitor of platelet aggregation, tripeptide Arg-betaAla-Asp, with IC50 = 10.6 microM (ADP, 1.5 microM), was revealed.  相似文献   

2.
Intracellular products of peptide transport were analyzed after thin layer chromatography separation by a fluorescamine labeling procedure. Dipeptides penetrated Pseudomonas aeruginosa via 2 transport systems, one of high affinity with KT values from 1–2 μM, and another one of low affinity (KT about 30 μM). A single transport system assumed tripeptide uptake with KT varying from 10–30 μM, depending on the tripeptide used. Peptides entering the cells were rapidly hydrolyzed into their constitutive amino acids.  相似文献   

3.
The present study evaluates the effect of dipyridamole and pentoxifylline, individually and in combination, on PGI2-like production and arachidonic acid metabolism of rat aorta “in vitro”. Pentoxifylline 100 μM and dipyridamole 92 and 184 μM increased PGI2-like activity, as measured by the platelet aggregation inhibitory capacity of the aortic ring incubates, by 71%, 46% and 60% respectively; a greater increase in PGI2-like activity was observed with the combination of the drugs than when they were used separately. This effect was observed even at the lowest doses assayed. In fact, dipyridamole 9.2 μM plus pentoxifylline 1 μM increased the PGI2-like activity by 30% while the individual increase was 4.5% and 10.6% respectively. To obtain more information on the effect of the dipyridamole-pentoxifylline combination on arachidonic acid metabolism, arteries were incubated with (1-14C) arachidonic acid, and the 6-keto-PGF and PGE2 quantified. Dipyridamole 92 μM plus pentoxifulline 1 and 10 μM increased 6-keto-PGF and PGE2 production by about 30% and 48% respectively while combination with pentoxifylline 100 μM increased the 6-keto-PGF 76.5% and the PGE2 50%. The possible biological effect and therapeutic implications of increased PGI2 production by the arteries due to the dipyridamole-pentoxifylline combination remains to be ascertained.  相似文献   

4.
Peptidylglycine α-hydroxylating monooxygenase (PHM), an enzyme involved in formation of neuropeptides with a C-terminal amide functionality in mammals and amphibians, was isolated from the head of an invertebrate, the honeybee, Apis mellifera, and purified 220-fold in 1% overall yield. The bee PHM has a molecular weight of 71,000, is membrane associated but can be solubilized with a detergent (n-octyl-β-D-glucopyranoside), and cross-reacts with rabbit antibodies generated toward bacterially expressed rat PHM. In the presence of copper, oxygen, and ascorbic acid, the enzyme hydroxylates model tripeptides such as dansyl-L-Phe-L-Phe-Gly on the methylene carbon of the glycine residue with retention of configuration. Using this tripeptide as substrate, the Km is 1.7 μM and the Vmax is 2.3 nmol ? μg?1 ? h?1. Treatment of the insect PHM with D-Phe-L-Phe-D-vinylglycine, a substrate analogue and mechanism-based inactivator of PHM from pig pituitary, results in irreversible loss of activity. The diastereomeric analogue, D-Phe-L-Phe-L-vinylglycine, is only a competitive inhibitor (lC50 = 320 μM). © 1994 Wiley-Liss, Inc.  相似文献   

5.
The effects of various flavonoids on platelet lipoxygenase and cyclooxygenase activities were studied. Baicalein selectively inhibited platelet lipoxygenase. The concentration for 50% inhibition (ID50) was 0.12 μM for platelet lipoxygenase and 0.83 mM for platelet cyclooxygenase. Therefore, the ID50 value for the cyclooxygenase was 6917 times that for the lipoxygenase. Baicalin also selectively inhibited the lipoxygenase, but it was less potent (ID50=100 μM). Other flavonoids tested had no inhibitory effect on either enzyme.  相似文献   

6.
A series of non-peptide inhibitors targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was designed based on the potent and selective minimal tripeptide Plk1 PBD inhibitor. Seven compounds were designed, synthesized and evaluated for fluorescence polarization (FP) assay. The most promising compound 10 bound to Plk1 PBD with IC50 of 3.37 μM and had no binding to Plk2 PBD or Plk3 PBD at 100 μM. Molecular docking study was performed and possible binding mode was proposed. MM/GBSA binding free energy calculation were in agreement with the observed experimental results. These novel non-peptide selective Plk1 PBD inhibitors provided new lead compounds for further optimization.  相似文献   

7.
Abstract

We have synthesized a new thyrotropin releasing hormone (TRH) analog, pGlu-2-diazo-His-Pro-NH2 5, which is a potential photoaffinity label for the TRH receptor. Its precursor, pGlu-2–amino-His-Pro-NH2 4, has been synthesized through successive coupling of a 2–aminohistidine derivative 1 with proline and pyroglutamic acid derivatives. Diazotization of the fully deprotected tripeptide 4 gave the photoactivatable TRH analog 5.

Compounds 4 and 5 exhibit IC50 values of 2 and 8 μM respectively, to be compared to the 0.02 μM value for native TRH.  相似文献   

8.
We have developed a new fluorescence assay for dipeptidylpeptidase IV using a tripeptide, l-prolyl-l-prolyl-l-alanine, which might be one of the potential natural substrates. The principle of the assay is based on the measurement of fluorescent adduct between alanine liberated from the tripeptide by enzymatic hydrolosis and o-phthaldialdehyde in the presence of 2-mercaptoethanol in aqueous alkaline medium. This new assay is sensitive enough to measure the enzyme activity in as little as 0.01 μl of human serum and in crevicular fluid obtained from human gingival sulcus. The Km value for the tripeptide was 1.7 · 10?5 M which is less than one-tenth of that obtained with other chromogenic or fluorogenic substrates. The interference by serum was overcome by simply incorporating the same amount of serum in the standards.  相似文献   

9.
We examined the role of Ca2+, both extracellular and intracellular in origin, in the release reaction and protein phosphorylation in rabbit platelets stimulated with platelet activating factor (acetylglyceryl ether phosphorylcholine), thrombin, or ionophore A23187. In the presence of extracellular Ca2+, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a putative antagonist of intracellular Ca2+ transport, blocked platelet activating factor-initiated serotonin release at a half-maximal inhibitor concentration of 40 μM, compared to 350 μM for thrombin-induced release and greater than 500 μM, for A23187-induced release. Platelet activating factor-induced phosphorylation of two platelet proteins of Mr=41 000 (P7P) and 20 000 (P9P) was inhibited by TMB-8, an effect which was additive to that caused by removing extracellular Ca2+. TMB-8 demonstrated only minor to non-existant inhibitory effects on phosphorylation in thrombin- or A23187-stimulated platelets. In contrast to P9P phosphorylation, phosphorylation of P7P caused by platelet activating factor was more dependent on a TMB-8 sensitive step than on the availability of extracellular Ca2+. Experiments with buffers containing fixed concentrations of free Ca2+ revealed that both processes (release and phosphorylation), when stimulated by platelet activating factor and thrombin, had the same threshold requirement (1–3 μM) for extracellular free Ca2+. These studies provide evidence that stimulation of rabbit platelets by platelet activating factor is more dependent on a TMB-8-sensitive intracellular Ca2+ source than is stimulation caused by thrombin. Furthermore, our data indicate that activation of different intracellular processes involved in platelet secretion (such as P7P and P9P phosphorylation) may require Ca2+ from different pools.  相似文献   

10.
We examined platelet aggregation and serotonin release, induced by less than 60 μM arachidonic acid, using washed platelet suspensions in the absense of albumin. The concentration of arachidonic acid use did not cause platelet lysis. Platelet responses induced by less than 20 μM arachidonic acid were inhibited by aspirin, whereas those induced by above 30 μM arachidonic acid were not inhibited, even by both aspirin and 5,8,11,14-eicosatetraynoic acid. Although phosphatidic acid and 1,2-diacylglcerol increased after the addition of arachidonic acid in aspirin-treated platelets, the amounts were not parallel to platelet aggregation. Oleic, linoleic and linolenic acids also induced platelet responses, while palmitic, stearic and arachidic acids did not. EDTA, dibutyryl cyclic AMP, apyrase and creatine phosphate / creatin phosphokinase brought about almost the same effects in platelet responses induced by the unsaturated fatty acids, other than arachodinic acid, as those induced by 40 μM arachodonic acid. These results suggest that the mechanism of the actions of more than 30 μM arachodinic acid on platelets is the same as that of the other unsaturated fatty acids and is independent of prostaglandin endoperoxides, thromboxane A2 and, perhaps, phosphatidic acid and 1,2-diacylglycerol.  相似文献   

11.
《Life sciences》1997,61(25):PL383-PL389
Cilostazol(6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)-butoxy]-3,4-dihydro-2(1H)-quinolinone) selectively inhibits cGMP-inhibited phosphodiesterase(PDE3) and is a potent inhibitor of platelet aggregation induced by various agonists. Effect of cilostazol on shear stress-induced human platelet aggregation(SIPA) was examined in vitro and ex vivo. Cilostazol inhibited SIPA dose-dependently in vitro. The IC50value of cilostazol for inhibition of SIPA was 15 ± 2.6 μM(m ± SE, n = 5), which was very similar to that(12.5 ± 2.1 μM) for inhibition of ADP-induced platelet aggregation. Cilostazol potentiates the inhibition of SIPA by PGE1, and enhances its ability to increase cAMP concentrations. A single oral adminstration of 100 mg cilostazol to healthy volunteers produced a significant inhibition of SIPA. This study demonstrates that cilostazol is an effective inhibitor of SIPA, which may be important for the prevention and the treatment of arterial occlusive diseases.  相似文献   

12.
The backbone NH groups of proteins can form N1N3‐bridges to δ‐ve or anionic acceptor atoms when the tripeptide in which they occur orients them appropriately, as in the RL and LR nest motifs, which have dihedral angles 1,2‐αRαL and 1,2‐αLαR, respectively. We searched a protein database for structures with backbone N1N3‐bridging to anionic atoms of the polypeptide chain and found that RL and LR nests together accounted for 92% of examples found (88% RL nests, 4% LR nests). Almost all the remaining 8% of N1N3‐bridges were found within a third tripeptide motif which has not been described previously. We term this a “crown,” because of the disposition of the tripeptide CO groups relative to the three NH groups and the acceptor oxygen anion, and the crown together with its bridged anion we term a “crown bridge.” At position 2 of these structures the dihedral angles have a tight αR distribution, but at position 1 they have a wider distribution, with ? and ψ values generally being lower than those at position 1. Over half of crown bridges involve the backbone CO group three residues N‐terminal to the tripeptide, the remainder being to other main‐chain or side‐chain carbonyl groups. As with nests, bridging of crowns to oxygen atoms within ligands was observed, as was bridging to the sulfur atom of an iron‐sulfur cluster. This latter property may be of significance for protein evolution. Proteins 2015; 83:2067–2076. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
A new series of 6-substituted amido, azo or thioureido-quinazolin-4(3H)-one was synthesized and tested for their in-vitro antitumor activity. Compounds 21, 53 and 60 showed broad spectrum antitumor activity with average IC50 values of 6.7, 7.6 and 9.1 μM, respectively compared with methotrexate (1, IC50 19.26 μM). As an attempt to reveal the mechanism of the antitumor potency, cell cycle analysis and DHFR inhibition were performed. Compounds 59 and 61 induced their cytotoxicity in Hela (IC50 10.6 μM) and HCT-116 (IC50 15.5 μM) cell lines, respectively through Pre-G1 apoptosis, inhibiting cell growth at G2-M phase. Compounds 29, 33, 59 and 61 showed DHFR inhibitory potency at IC50 0.2, 0.2, 0.3 and 0.3 μM, respectively. The active DHFR inhibitors showed high affinity binding toward the amino acid residues Thr56, Ser59 and Ser118. The active compounds obeyed Lipinski’s rule of five and could be used as template model for further optimization.  相似文献   

14.
The effects of prostaglandin F on human blood platelet function were investigated. PGF at 15 μM completely blocked platelet aggregation induced by 500 μM arachidonic acid or 3 μM U46619 but had no effect on aggregatin induced by 7.5 μM ADP. A similar specificity of action was not obtained with either PGI2 or PGE2. Thus concentrations of PGI2 (3 nM) or PGE2 (20 μ M) which inhibited U46619-induced aggregation by 100% also blocked ADP-stimulated aggregation.The inhibitory properties of PGF were not related to increases in platelet cAMP, since direct measurement of intracellular cAMP revealed that 15 μ M PGF produced no substantial change in cAMP levels. This finding was in direct contrast to results obtained using either PGI2 or PGE2. Both PGI2 (3 nM) and PGE2 (20 μ M) induced significant increases in platelet cAMP levels.The possibility that PGF directly interacts at the platelet TXA2/PGH2 receptor was investigated by measuring [3H]PGF binding to isolated platelet membranes. It was found that [3H] PGF binding reached equilibrium within 30 min at room temperature and could be 90% displaced by addition of 1000 fold excess of unlabelled PGF. Furthermore, when 1000 fold excess of either the TXA2/PGH2 “mimetic” U46619 or the TXA2/PGH2 antagonist 13-azaprostanoic acid was added, specific [3H] PGF binding was displaced by 95% and 85% respectively. In contrast, the same molar excess of 6-keto-PGF, azo analog 1, or TXB2, caused displacement of only 15%, 20% or 25% of the [3H] PGF binding. Scatchard analysis indicated that [3H] PGF has two binding sites; i.e., a high affinity binding site with an apparent Kd of 50 nM and a low affinity binding site with apparent Kd of 320 nM. These results suggest that the selective inhibition by PGF of AA or U46619-induced aggregation may be mediated through interaction at the platelet TXA2/PGH2 receptor.  相似文献   

15.
The purpose of this study was to determine the effects of diamide, a reversible sulfhydryl oxidizing agent, on the transport of serotonin (5-HT) by mouse platelets. Diamide produced a concentration-dependent (10–200 μM) stimulation of 5-HT transport that was rapid and sustained over 0–10 minutes of incubation. When platelets were incubated with diamide (10–200 μM) in the presence of glucose, the content of reduced glutathione was significantly decreased only at a final concentration of 200 μM, while washed platelets incubated with diamide (10–200 μM), in the absence of glucose, had a significant concentration-dependent decrease in their content of reduced glutathione. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked diamide-induced stimulation of 5-HT transport. The kinetics of 5-HT transport showed that diamide caused a marked increase in the maximal rate of transport (Vmax control = 28.4 ± 1.4 vs. Vmax diamide = 60.9 ± 4.1 pM/108 platelets/4 min) but did not significantly alter the Km values. Ouabain, an inhibitor of platelet Na+-K+ ATPase, blocked the stimulation by diamide in a concentration-dependent manner. Dithiothreitol, a disulfide reducing agent, was able to partially reverse the stimulation of platelet 5-HT transport caused by diamide. This study has shown that diamide can stimulate the active transport of 5-HT by mouse platelets and suggests a possible role for free sulfhydryl groups in the regulation of this process.  相似文献   

16.
Herein is described the synthesis of a novel class of peptidyl FVIIa inhibitors having a C-terminal benzyl ketone group. This class is designed to be potentially suitable as stabilization agents of liquid formulations of rFVIIa, which is a serine protease used for the treatment of hemophilia A and B inhibitor patients. A library of compounds was synthesized with different tripeptide sequences, N-terminals and d-amino acids in the P3 position. Cbz-d-Phe-Phe-Arg-bk (33) was found to be the best candidate with a potency of Ki = 8 μM and no substantial inhibition of related blood coagulation factors (thrombin and FXa). Computational studies revealed that 33 has a very stable binding conformation due to intramolecular hydrogen bonds, which cannot be formed with l-Phe in the P3 position. Nonpolar amino acids were found to be superior, probably due to a minimization of the cost of desolvation upon binding to FVIIa.  相似文献   

17.
18.
Calmodulin copurifies with platelet plasma membranes isolated by glycerol-induced lysis and density gradient centrifugation. These membranes also bind 125I-labeled calmodulin in vitro in the presence of Ca2+. Binding is largely reduced by replacing Ca2+ by Mg2+ or by addition of an excess unlabeled calmodulin. The specific component of binding is saturable, with an apparent Kd of 27 nM and a maximum of 15.9 pmol binding sites per mg of membrane protein. This is equivalent to approx. 4100 binding sites per platelet. Binding was inhibited by addition of phenothiazines, a group of calmodulin antagonists. Half-maximal inhibition was attained with approx. 20 μM trifluoperazine or 50 μM chlorpromazine. In contrast, chlorpromazine-sulfoxide which is inactive towards calmodulin, did not affect the binding. Calmodulin binding polypeptides of the plasma membrane were identified by a gel-overlay technique. A major calmodulin-binding component of molecular weight 149 000 was detected. Binding to this band was Ca2+-dependent and inhibited by chlorpromazine. The molecular weight of this polypeptide is similar to that of glycoprotein I and also that of the red cell (Ca2+ + Mg2+)-stimulated ATPase, which is known to bind calmodulin. The possible role of calmodulin in platelet activation is analysed.  相似文献   

19.
The host-defense peptide ocellatin-3N (GIFDVLKNLAKGVITSLAS.NH2), first isolated from the Caribbean frog Leptodactylus nesiotus, inhibited growth of clinically relevant Gram-positive and Gram-negative bacteria as well as a strain of the major emerging yeast pathogen Candida parapsilosis. Increasing cationicity while maintaining amphipathicity by the substitution Asp4→Lys increased potency against the microorganisms by between 4- and 16-fold (MIC ≤3 μM) compared with the naturally occurring peptide. The substitution Ala18→Lys and the double substitution Asp4→Lys and Ala18→Lys had less effects on potency. The [D4K] analog also showed 2.5- to 4-fold greater cytotoxic potency against non-small-cell lung adenocarcinoma A549 cells, breast adenocarcinoma MDA-MB-231 cells, and colorectal adenocarcinoma HT-29 cells (LC50 values in the range of 12–20 μM) compared with ocellatin-3N but was less hemolytic to mouse erythrocytes. However, the peptide showed no selectivity for tumor-derived cells [LC50 = 20 μM for human umbilical vein endothelial cells (HUVECs)]. Ocellatin-3N and [D4K]ocellatin-3N stimulated the release of insulin from BRIN-BD11 clonal β-cells at concentrations ≥1 nM, and [A18K]ocellatin-3N, at concentrations ≥0.1 nM. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM, indicating that plasma membrane integrity had been preserved. The three peptides produced an increase in intracellular [Ca2+] in BRIN-BD11 cells when incubated at a concentration of 1 μM. In view of its high insulinotropic potency and relatively low hemolytic activity, the [A18K] ocellatin analog may represent a template for the design of agents with therapeutic potential for the treatment of patients with type 2 diabetes.  相似文献   

20.
Recently we have found that chemotactic factors stimulate neutrophils in suspension to aggregate. Because of an obvious analogy to platelet aggregation, we examined the influence of three prostaglandins on this process. Prostaglandins E1, E2 and F alone did not cause aggregation of the neutrophils but were able to partially inhibit the aggregation response induced by the synthetic chemotactic tripeptide, formly-methionyl-leucyl-phenylalanine. The minimal inhibitory concentrations for prostaglandins E1, E2 and F were 10−7, 10−6 and 10−5M, respectively. These results are similar to those found for the prostaglandin-induced inhibition of platelet aggregation. It may be, therefore, that neutrophil aggregation, like platelet aggregation, is modulated by intracellular prostaglandins and other products of arachidonic acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号