首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Amyloid-beta (Aβ) protein is related to Alzheimer disease (AD), and various experiments have shown that oligomers as small as dimers are cytotoxic. Recent studies have concluded that interactions of Aβ with neuronal cell membranes lead to disruption of membrane integrity and toxicity and they play a key role in the development of AD. Molecular dynamics (MD) simulations have been used to investigate Aβ in aqueous solution and membranes. We have previously studied monomeric Aβ40 embedded in dipalmitoylphosphatidylcholine (DPPC) membrane using MD simulations. Here, we explore interactions of two Aβ40 peptides in DPPC bilayer and its consequences on dimer distribution in a lipid bilayer and on the secondary structure of the peptides. We explored that N-terminals played an important role in dimeric Aβ peptide aggregations and Aβ-bilayer interactions, while C-terminals bound peptides to bilayer like anchors. We did not observe exiting of peptides in our simulations although we observed insertion of peptides into the core of bilayer in some of our simulations. So it seems that the presence of Aβ on membrane surface increases its aggregation rate, and as diffusion occurs in two dimensions, it can increase the probability of interpeptide interactions. We found that dimeric Aβ, like monomeric one, had the ability to cause structural destabilization of DPPC membrane, which in turn might ultimately lead to cell death in an in vivo system. This information could have important implications for understanding the affinity of Aβ oligomers (here dimer) for membranes and the mechanism of Aβ oligomer toxicity in AD.  相似文献   

2.
Nymeyer H  Woolf TB  Garcia AE 《Proteins》2005,59(4):783-790
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.  相似文献   

3.
As a way to quantify the diffusion process of molecular compounds through biological membranes, we investigated in this study the dynamics of DMSO through an 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) bilayer system. To properly account for the diffusion of DMSO due to a concentration gradient, a double DPPC bilayer was setup for our simulations. In such configuration, the aqueous phases can be explicitly associated with the extra and intracellular domains of the membrane, which is seldom the case in studies of single lipid bilayer due to the periodicity imposed by the simulations. DMSO molecules were initially contained in one of the aqueous phases (extracellular region) at a concentration of 5 wt.%. Molecular dynamics simulation was performed in this system for 95 ns at 350 K and 1 bar. The simulations showed that although many DMSO molecules penetrated the lipid bilayer, only about 10% of them crossed the bilayer to reach the other aqueous phase corresponding to the intracellular region of the membrane. The simulation time considered was insufficient to reach equilibrium of the DMSO concentration between the aqueous phases. However, the simulations provided sufficient information to estimate parameters to apply Fick's Law to model the diffusion process of the system. Using this model, we predicted that for the time considered in our simulation, the concentration of DMSO in the intracellular domain should have been about half of the actual value obtained. The model also predicted that equilibrium of the DMSO concentration in the system would be reached after about 2000 ns, approximately 20 times longer than the performed simulation.  相似文献   

4.
In this paper we have investigated via x-ray diffraction the influence of dimethyl sulfoxide (DMSO), known for its biological and therapeutic properties, on the structure of lipid membranes of dipalmitoylphosphatidylcholine (DPPC) in excess of the solvent (DMSO/water) at mole DMSO fractions XDMSO in (0.1) and under equilibrium conditions. At small XDMSO </= 0.133 the repeat distance d is reduced remarkably, whereas wide-angle x-ray diffraction pattern remains almost unchanged with the increase in XDMSO. It agrees well with previous study (Yu and Quinn, 1995). At 0.133 < XDMSO < 0.3 the repeat period d reduces slowly; however, an orthorombic in-plane lattice of hydrocarbon chains transfers to a disordered quasihexagonal lattice. The increase in XDMSO from 0.3 up to approximately 0.9 leaves d almost unchanged, whereas it leads to less disordered packing of hydrocarbon chains. At XDMSO approximately 0.9, Lbeta' phase transfers into interdigitated phase. The chain-melting phase transition temperature of DPPC membranes increases by several degrees with the increase of DMSO concentration. It points to a strong concentration-dependent solvation of membrane surface by DMSO. Thus DMSO strongly interacts with the membrane surface, probably displacing water and modifying the structure of the lipid bilayer. It appears to determine some of the properties of DMSO as a biologically and therapeutically active substance.  相似文献   

5.
Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments.  相似文献   

6.
We have studied the effects of cholesterol and steroid-based antibiotic fusidic acid (FA) on the behavior of lipid bilayers using a variety of experimental techniques together with atomic-scale molecular dynamics simulations. Capillary electrophoretic measurements showed that FA was incorporated into fluid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes. Differential scanning calorimetry in turn showed that FA only slightly altered the thermodynamic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, whereas cholesterol abolished all endotherms when the mole fraction of cholesterol (X(chol)) was >0.20. Fluorescence spectroscopy was then used to further characterize the influence of these two steroids on DPPC large unilamellar vesicles. In the case of FA, our result strongly suggested that FA was organized into lateral microdomains with increased water penetration into the membrane. For cholesterol/DPPC mixtures, fluorescence spectroscopy results were compatible with the formation of the liquid-ordered phase. A comparison of FA and cholesterol-induced effects on DPPC bilayers through atomistic molecular dynamics simulations showed that both FA and cholesterol tend to order neighboring lipid chains. However, the ordering effect of FA was slightly weaker than that of cholesterol, and especially for deprotonated FA the difference was significant. Summarizing, our results show that FA is readily incorporated into the lipid bilayer where it is likely to be enriched into lateral microdomains. These domains could facilitate the association of elongation factor-G into lipid rafts in living bacteria, enhancing markedly the antibiotic efficacy of FA.  相似文献   

7.
As a way to quantify the diffusion process of molecular compounds through biological membranes, we investigated in this study the dynamics of DMSO through an 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) bilayer system. To properly account for the diffusion of DMSO due to a concentration gradient, a double DPPC bilayer was setup for our simulations. In such configuration, the aqueous phases can be explicitly associated with the extra and intracellular domains of the membrane, which is seldom the case in studies of single lipid bilayer due to the periodicity imposed by the simulations. DMSO molecules were initially contained in one of the aqueous phases (extracellular region) at a concentration of 5 wt.%. Molecular dynamics simulation was performed in this system for 95 ns at 350 K and 1 bar. The simulations showed that although many DMSO molecules penetrated the lipid bilayer, only about 10% of them crossed the bilayer to reach the other aqueous phase corresponding to the intracellular region of the membrane. The simulation time considered was insufficient to reach equilibrium of the DMSO concentration between the aqueous phases. However, the simulations provided sufficient information to estimate parameters to apply Fick's Law to model the diffusion process of the system. Using this model, we predicted that for the time considered in our simulation, the concentration of DMSO in the intracellular domain should have been about half of the actual value obtained. The model also predicted that equilibrium of the DMSO concentration in the system would be reached after about 2000 ns, approximately 20 times longer than the performed simulation.  相似文献   

8.
Properties of compatible solutes in aqueous solution   总被引:1,自引:0,他引:1  
We have performed Molecular Dynamics simulations of ectoine, hydroxyectoine and urea in explicit solvent. Special attention has been spent on the local surrounding structure of water molecules. Our results indicate that ectoine and hydroxyectoine are able to accumulate more water molecules than urea by a pronounced ordering due to hydrogen bonds. We have validated that the charging of the molecules is of main importance resulting in a well defined hydration sphere. The influence of a varying salt concentration is also investigated. Finally we present experimental results of a DPPC monolayer phase transition that validate our numerical findings.  相似文献   

9.
X-ray diffraction, neutron diffraction and differential scanning calorimetry were used to investigate phase transitions in the ternary system phospholipid/dimethyl sulfoxide (DMSO)/water under cooling for three homologous phospholipids: dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC). Below the temperature of ice formation from -40 to -113 degrees C, a new lamellar phase of DPPC and DSPC was found at and above a DMSO molar fraction of X(DMSO) = 0.05. Below X(DMSO) = 0.05 only a single dehydrated Lc-phase exists after ice formation. The new phase has an increased membrane repeat distance and coexists with a dehydrated Lc-phase. DPPC with a DMSO molar fraction of X(DMSO) = 0.07 shows a membrane repeat distance of the new phase of d = 6.61 +/- 0.03 nm. The value of d increases at the increase of X(DMSO). The new phase was not observed in the ternary system with DMPC. No correlation between the new phase and the glass transition of bound water in the intermembrane space was detected. The new phase was detected only in the systems with excess of water. The creation of the new phase demonstrates the specific DMSO interaction with hydrocarbon chains.  相似文献   

10.
We performed an extensive computational study to obtain insight in the molecular mechanisms that take place prior to membrane fusion. We focused on membrane-anchored hybrid macromolecules (lipid–polymer–oligopeptide) that mimic biological SNARE proteins in terms of liposome fusion characteristics [H. Robson Marsden et al., 2009]; efficient micro-second simulation was enabled by combining validated MARTINI force fields for the molecular building blocks in coarse-grained molecular dynamics (CGMD). We find that individual peptide domains in the hybrid macromolecules bind and partially integrate parallel to the membrane surface, in agreement with experimental findings. By varying several experimental design parameters, we observe that peptide domains remain in the solvent phase only in two cases: (1) for solitary lipopeptides (low concentration), below a threshold area per lipid in the membrane, and (2) when the lipopeptide concentration is high enough for the peptide domains to self-assemble into tetrameric homo-complexes. The peptide–membrane binding is not affected by solvent-induced peptide unfolding, which we mimicked by relaxing the usual MARTINI helix constraints. Remarkably, in this case, a reverse transition to a helical secondary structure is observed after binding, highlighting the role of the membrane as a template (partitioning–folding coupling). Our findings undermine the current view of the initial stages towards fusion, in which membranes are thought to be kept in close apposition via dimerization of individual complementary peptides in the solvent phase. Although we did not study actual fusion, our simulations show that the formation of homomers, which is suppressed in experimental peptide-pair design and therefore believed to be insignificant for fusion, by peptides anchored to the same membrane does play a key role in this locking mechanism and potentially also in membrane destabilization that precede fusion.  相似文献   

11.
We performed an extensive computational study to obtain insight in the molecular mechanisms that take place prior to membrane fusion. We focused on membrane-anchored hybrid macromolecules (lipid–polymer–oligopeptide) that mimic biological SNARE proteins in terms of liposome fusion characteristics [H. Robson Marsden et al., 2009]; efficient micro-second simulation was enabled by combining validated MARTINI force fields for the molecular building blocks in coarse-grained molecular dynamics (CGMD). We find that individual peptide domains in the hybrid macromolecules bind and partially integrate parallel to the membrane surface, in agreement with experimental findings. By varying several experimental design parameters, we observe that peptide domains remain in the solvent phase only in two cases: (1) for solitary lipopeptides (low concentration), below a threshold area per lipid in the membrane, and (2) when the lipopeptide concentration is high enough for the peptide domains to self-assemble into tetrameric homo-complexes. The peptide-membrane binding is not affected by solvent-induced peptide unfolding, which we mimicked by relaxing the usual MARTINI helix constraints. Remarkably, in this case, a reverse transition to a helical secondary structure is observed after binding, highlighting the role of the membrane as a template (partitioning-folding coupling). Our findings undermine the current view of the initial stages towards fusion, in which membranes are thought to be kept in close apposition via dimerization of individual complementary peptides in the solvent phase. Although we did not study actual fusion, our simulations show that the formation of homomers, which is suppressed in experimental peptide pair design and therefore believed to be insignificant for fusion, by peptides anchored to the same membrane does play a key role in this locking mechanism and potentially also in membrane destabilization that precedes fusion.  相似文献   

12.
By means of atomistic molecular dynamics simulations, we study cholesterol–DPPC (dipalmitoyl phosphatidylcholine) bilayers of different composition, from pure DPPC bilayers to a 1:1 mixture of DPPC and cholesterol. The lateral pressure profiles through the bilayers are computed and separated into contributions from the different components. We find that the pressure inside the bilayer changes qualitatively for cholesterol concentrations of about 20% or higher. The pressure profile in the inside of the bilayer then turns from a rather flat shape into an alternating sequence of regions with large positive and negative lateral pressure. The changes in the lateral pressure profile are so characteristic that specific interaction between cholesterol and molecules such as membrane proteins mediated solely via the lateral pressure profile might become possible.  相似文献   

13.
The conformation of [Tyr(8)]SP (Y8SP) in dimethylsulfoxide (DMSO), water, and dipalmitoyl phosphatidylcholine (DPPC) bilayers has been investigated by two-dimensional nmr and molecular dynamics simulations. Molecular modeling of the conformation of Y8SP by incorporating nuclear Overhauser effects as distance restraints shows wide differences in its conformation in the three media. In DMSO, the main structural features are gamma-bends along with a nonspecific bend around Gln(6)-Phe(7)-Tyr(8). The random coil structure seen in water is transformed into a beta-turn around the segment Gln(5)-Gln(6)-Phe(7)-Tyr(8) when Y8SP is incorporated into DPPC bilayers. The lower biological activity of Y8SP compared to the native peptide (SP) has been attributed to the absence of any helix like structure at the central residues, a feature shown to be an important prerequisite for SP and SP agonists to bind to the neurokinin 1 tachykinin receptor.  相似文献   

14.
Song Y  Guallar V  Baker NA 《Biochemistry》2005,44(41):13425-13438
Salicylate, an amphiphilic molecule and a popular member of the nonsteroidal anti-inflammatory drug family, is known to affect hearing through reduction of the electromechanical coupling in the outer hair cells of the ear. This reduction of electromotility by salicylate has been widely studied, but the molecular mechanism of the phenomenon is still unknown. In this study, we investigated one aspect of salicylate's action, namely the perturbation of electrical and mechanical membrane properties by salicylate in the absence of cytoskeletal or membrane-bound motor proteins such as prestin. In particular, we simulated the interaction of salicylate with a dipalmitoylphosphatidylcholine (DPPC) bilayer via atomically detailed molecular dynamics simulations to observe the effect of salicylate on the microscopic and mesoscopic properties of the bilayer. The results demonstrate that salicylate interacts with the bilayer by associating at the water-DPPC interface in a nearly perpendicular orientation and penetrating more deeply into the bilayer than either sodium or chloride. This association has several affects on the membrane properties. First, binding of salicylate to the membrane displaces chloride from the bilayer-water interface. Second, salicylate influences the electrostatic potential and dielectric properties of the bilayer, with significant changes at the water-lipid bilayer interface. Third, salicylate association results in structural changes, including decreased headgroup area per lipid and increased lipid tail order. However, salicylate does not significantly alter the mechanical properties of the DPPC bilayer; bulk compressibility, area compressibility, and bending modulus were only perturbed by small, statistically insignificant amounts by the presence of salicylate. The observations from these simulations are in qualitative agreement with experimental data and support the conclusion that salicylate influences the electrical but not the mechanical properties of DPPC membranes.  相似文献   

15.
16.
Coarse-grained (CG) simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models.  相似文献   

17.
The bacterial sensor Photoactive Yellow Protein (PYP) signals the presence of blue light by undergoing a series of conformational changes. We present atomistic Parallel Tempering (Replica Exchange Molecular Dynamics) simulations of conformational changes occurring during the photo-cycle of PYP. First, we study the signaling state formation of PYP in detail. Our previous simulations have shown that the formation of the signaling state is characterized by the solvent exposure of both the chromophore and Glu46 (Vreede J, Crielaard W, Hellingwerf KJ, Bolhuis PG. Biophys J, 2005;8:3525-3535). Subsequent NMR results agreed with this prediction, but as these experiments were performed on an N-terminally truncated mutant, a simulation of this mutant would further substantiate our previous results. Here, we compare simulations of the truncated PYP to the NMR structures, as well as to the wild type predictions. This comparison also gives some insight into the role of the N-terminal domain of PYP, which restricts the movement of the chromophore binding pocket (CBP) in the wild type. Second, we report simulations of the recovery of the receptor state from the signaling state. While we did not observe complete refolding of the protein, we did observe transient interactions between residues of the CBP occurring when the chromophore is in a trans configuration. Using simulations that sample anomalous exposure of the chromophore in the receptor state, we were able to sample chromophore re-entry into its binding pocket. While the involved time scales prohibit drawing definitive conclusions even when using parallel tempering, we nevertheless propose that the formation of a helix in the CBP is essential for a successful recovery of the receptor state, and forms a kinetic barrier in this process.  相似文献   

18.
He F  Liu W  Zheng S  Zhou L  Ye B  Qi Z 《Molecular membrane biology》2012,29(3-4):107-113
It is well known that dimethyl sulphoxide (DMSO) increases membrane permeability, which makes it widely used as a vehicle to facilitate drug delivery across biological membranes. However, the mechanism of how DMSO increases membrane permeability has not been well understood. Recently, molecular dynamics simulations have demonstrated that DMSO can induce water pores in biological membranes, but no direct experimental evidence is so far available to prove the simulation result. Using FluxOR Tl? influx assay and intracellular Ca2? imaging technique, we studied the effect of DMSO on Tl? and Ca2? permeation across cell membranes. Upon application of DMSO on CHO-K1 cell line, Tl? influx was transiently increased in a dose-dependent manner. The increase in Tl? permeability induced by DMSO was not changed in the presence of blockers for K? channel and Na?-K? ATPase, suggesting that Tl? permeates through transient water pores induced by DMSO to enter into the cell. In addition, Ca2? permeability was significantly increased upon application of DMSO, indicating that the transient water pores induced by DMSO were non-selective pores. Furthermore, similar results could be obtained from RAW264.7 macrophage cell line. Therefore, this study provided experimental evidence to support the prediction that DMSO can induce transient water pores in cell membranes, which in turn facilitates the transport of active substances across membranes.  相似文献   

19.
We demonstrate the ease and utility of simulating heterogeneous interfacial systems with P2(1) and Pc periodic boundary conditions which allow, for example, lipids in a membrane to switch leaflets. In preliminary tests, P2(1) was shown to yield equivalent results to P1 in simulations of bulk water, a water/vacuum interface, and pure DPPC bilayers with an equal number of lipids per leaflet; equivalence of Pc and P1 was also demonstrated for the former two systems. P2(1) was further tested in simulations involving the spreading of an octane film on water, and equilibration of a DPPC bilayer from an initial condition containing different numbers of lipids in the two leaflets. Lastly, a simulation in P2(1) of a DOPC/melittin membrane showed significant passage of lipids to the melittin-containing leaflet from the initial distribution, and lends insight into the condensation of lipids by melittin.  相似文献   

20.
Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号