首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.  相似文献   

3.
The folding and assembly of nascent proteins in the endoplasmic reticulum are assisted by the molecular chaperone calnexin, which is itself retained within the endoplasmic reticulum. It was up to now assumed that calnexin was selectively expressed on the surface of immature thymocytes because of a particular characteristic of the protein sorting machinery in these cells. We now report that a small fraction of calnexin is normally expressed on the surface of various cells such as mastocytoma cells, murine splenocytes, fibroblast cells, and human HeLa cells. Surface biotinylation followed by chase culture of living cells revealed that calnexin is continuously delivered to the cell surface and then internalized for lysosomal degradation. These results suggest that there is continuous exocytosis and endocytosis of calnexin, and the amount of calnexin on the plasma membrane results from the balance of the rates of these two events. To study the structural requirement of calnexin for surface expression, we created deletion mutants of calnexin and found that the luminal domain, particularly the glycoprotein binding domain, is necessary. These findings suggest that the surface expression of calnexin depends on the association with glycoproteins and that calnexin may play a certain role as a chaperone on the plasma membrane as well.  相似文献   

4.
The subcellular distribution of calnexin is mediated by PACS-2   总被引:1,自引:0,他引:1       下载免费PDF全文
Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.  相似文献   

5.
As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.  相似文献   

6.
Calnexin is an endoplasmic reticulum (ER)-resident molecular chaperone that plays an essential role in the correct folding of membrane proteins. We found that calnexin is subjected to partial cleavage in apoptotic mouse cells. Both ER stress-inducing and ER stress-non-inducing apoptotic stimuli caused the cleavage of calnexin, indicating that this event does not always occur downstream of ER stress. The inhibition of caspases that target the amino acid sequence DXXD abrogated calnexin cleavage in apoptotic stimulus-treated cells. In addition, disruption of one of two DXXD sequences located in the cytoplasmic domain caused calnexin to escape cleavage during apoptosis. Furthermore, calnexin was cleaved in vitro by recombinant caspase-3 or caspase-7. Finally, the overexpression of a presumed cleavage product of calnexin partly inhibited apoptosis. These results collectively suggest that caspase-3 or caspase-7 cleaves calnexin, whose cleaved product leads to the attenuation of apoptosis.  相似文献   

7.
Mutations in the human kidney anion exchanger 1 (kAE1) membrane glycoprotein cause impaired urine acidification resulting in distal renal tubular acidosis (dRTA). Dominant and recessive dRTA kAE1 mutants exhibit distinct trafficking defects with retention in the endoplasmic reticulum (ER), Golgi, or mislocalization to the apical membrane in polarized epithelial cells. We examined the interaction of kAE1 with the quality control system responsible for the folding of membrane glycoproteins and the retention and degradation of misfolded mutants. Using small molecule inhibitors to disrupt chaperone interactions, two functional, dominant kAE1 mutants (R589H and R901stop), retained in the ER and targeted to the proteasome for degradation by ubiquitination, were rescued to the basolateral membrane of Madin-Darby canine kidney cells. In contrast, the Golgi-localized, recessive G701D and the severely misfolded, ER-retained dominant Southeast Asian ovalocytosis (SAO) mutants were not rescued. These results show that functional dRTA mutants are retained in the ER due to their interaction with molecular chaperones, particularly calnexin, and that disruption of these interactions can promote their escape from the ER and cell surface rescue.  相似文献   

8.
In this paper we describe the avian homolog of mammalian CD45. We show that this Ag is expressed on all leukocytes but not on erythroid cells or their immediate precursors. Immunoprecipitations demonstrated that B lineage cells from the bursa of Fabricius expressed a higher molecular mass variant (215 kDa) than did T lineage cells from the thymus (190 kDa), and crucially, these high molecular mass molecules had intrinsic phosphotyrosine phosphatase activity characteristic of mammalian CD45. We show that levels of CD45 expression as detected by mAb LT40 in the avian thymus are heterogeneous and further that mAb LT40 can deplete all phosphotyrosine phosphatase activity from thymocyte membrane preparations. Therefore total levels of CD45 are heterogeneous among avian thymocytes. Specifically, 87 to 89% of thymocytes expressed fourfold higher levels of surface CD45 (CD45hi) than the remaining 11 to 13% (CD45lo). The CD45lo population contained exclusively thymocytes with the phenotype CD3-4-8lo, characteristic of the immediate precursors to the CD3-4+8+ thymic population which are CD45hi. The shift from low to high levels of surface CD45 expression therefore occurred at the same stage as the transition from CD4-8lo to CD4+8+ and before the expression of CD3. The protein tyrosine kinase activity associated with CD4 and CD8 (p56lck) and the phosphatase activity of CD45 have been implicated elsewhere in jointly regulating peripheral T cell signal transduction and subsequent cellular responses. The coordinated expression of high levels of CD45 with both CD4 and CD8 in the avian thymus supports the possibility that these molecules may function together in regulating thymocyte growth and/or differentiation.  相似文献   

9.
The alpha beta T cell antigen receptor (TCR) that is expressed on most T lymphocytes is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER) and then transported to the plasma membrane. Expression of the TCR complex is quantitatively regulated during T cell development, with immature CD4+CD8+ thymocytes expressing only 10% of the number of surface alpha beta TCR complexes that are expressed on mature T cells. However, the molecular basis for low TCR expression in developing alpha beta T cells is unknown. In the present study we report the unexpected finding that assembly of nascent component chains into complete TCR alpha beta complexes is severely impaired in immature CD4+CD8+ thymocytes relative to their mature T cell progeny. In particular, the initial association of TCR alpha with TCR beta proteins, which occurs relatively efficiently in mature T cells, is markedly inefficient in immature CD4+CD8+ thymocytes, even for a matched pair of transgenic TCR alpha and TCR beta proteins. Inefficient formation of TCR alpha beta heterodimers in immature CD4+CD8+ thymocytes was found to result from the unique instability of nascent TCR alpha proteins within the ER of immature CD4+CD8+ thymocytes, with nascent TCR alpha proteins having a median survival time of only 15 min in CD4+CD8+ thymocytes, but > 75 min in mature T cells. Thus, these data demonstrate that stability of TCR alpha proteins within the ER is developmentally regulated and provide a molecular basis for quantitative differences in alpha beta TCR expression on immature and mature T cells. In addition, these results provide the first example of a receptor complex whose expression is quantitatively regulated during development by post-translational limitations on receptor assembly.  相似文献   

10.
Cannon KS  Cresswell P 《The EMBO journal》2001,20(10):2443-2453
Retention of misfolded proteins in the endoplasmic reticulum (ER) is a primary mechanism of quality control. To discover whether quality control can monitor assembly inside the hydrophobic ER membrane, we characterized the folding and transport of the tetraspanin glycoprotein CD82. Truncated forms of CD82 that are missing one or more transmembrane segments remain in the ER. A construct (TM 2-4) that is missing the first transmembrane segment remains in the ER, even though its extracellular domain, which is facing the ER lumen, has folded to the native structure. Transport to the cell surface is restored by co-expressing the missing segment (TM 1) as a separate polypeptide. Prior to leaving the ER, CD82 transiently associates with the membrane-bound chaperone calnexin but not with its soluble homolog calreticulin. TM 2-4, in contrast, remains in a prolonged interaction with calnexin that is partially reversed by co-expressing TM 1. These findings establish a simple system to study transmembrane domain assembly, show that ER quality control can directly monitor assembly inside the lipid bilayer and suggest that calnexin may play a role in this process.  相似文献   

11.
With a signal trap method, we previously identified stromal interaction molecule (STIM: originally named as SIM) as a protein, which has a signal peptide in 1996. However, recent works have accumulated evidences that STIM1 and STIM2 reside in endoplasmic reticulum (ER) and that both mainly sense ER Ca(2+) depletion, which plays an essential role in store operated calcium entry. In the present study, we extensively analyzed the domain functions and associated molecules of STIMs. A STIM1 mutant lacking the coiled-coil domains was massively expressed on the cell surface while mutants with the coiled-coil domains localized in ER. In addition, STIM1 mutants with the coiled-coil domains showed a longer half-life of proteins than those without them. These results are likely to indicate that the coiled-coil domains of STIM1 are essential for its ER-retention and its stability. Furthermore, we tried to comprehensively identify STIM1-associated molecules with mass spectrometry analysis of co-immunoprecipitated proteins for STIM1. This screening clarified that both STIM1 and STIM2 have a capacity to bind to a chaperone, calnexin as well as two protein-transporters, exportin1 and transportin1. Of importance, our result that glycosylation on STIM1 was not required for the association between STIM1 and calnexin seems to indicate that calnexin might function on STIM1 beyond a chaperone protein. Further information concerning regulatory mechanisms for STIM proteins including the data shown here will provide a model of Ca(2+) control as well as a useful strategy to develop therapeutic drugs for intracellular Ca(2+)-related diseases including inflammation and allergy.  相似文献   

12.
The endoplasmic reticulum (ER) has evolved specific mechanisms to ensure protein folding as well as the maintenance of its own homeostasis. When these functions are not achieved, specific ER stress signals are triggered to activate either adaptive or apoptotic responses. Here, we demonstrate that MCF-7 cells are resistant to tunicamycin-induced apoptosis. We show that the expression level of the ER chaperone calnexin can directly influence tunicamycin sensitivity in this cell line. Interestingly, the expression of a calnexin lacking the chaperone domain (DeltaE) partially restores their sensitivity to tunicamycin-induced apoptosis. Indeed, we show that DeltaE acts as a scaffold molecule to allow the cleavage of Bap31 and thus generate the proapoptotic p20 fragment. Utilizing the ability of MCF-7 cells to resist tunicamycin-induced apoptosis, we have characterized a molecular mechanism by which calnexin regulates ER-stress-mediated apoptosis in a manner independent of its chaperone functions but dependent of its binding to Bap31.  相似文献   

13.
In order to have a proper biosynthesis and secretion of the melanin-pigment granules (melanosomes) the melanocyte may require a melanosome-associated molecule that provides a signal for assembly and organization of melanogenic enzymes and proteins within the compartment of melanosomes. This study reports the presence of a Ca2+-binding phosphoprotein, p90, which can be engaged in such melanogenic function, located on the melanosomal membrane of human melanocytes. A human melanoma cDNA expression library in λ Zap II was screened with a rabbit polyclonal antibody raised against human melanosomes isolated from cultured human melanoma cells, SK MEL 23. A cDNA encoding a melanosomal protein, Mr 90 kDa, was identified through this immunoscreening. A partial sequencing of nucleotides (822 bp from the N-terminal domain) of this clone (3.8 kb) and predicted amino acids showed more than 90% homology with dog calnexin, a previously reported endoplasmic reticulum (ER) transmembrane protein. A fusion protein of this p90 with β-galactosidase expressed in Escherichia coli revealed both the immuno-cross-reactivity with anti-dog calnexin and anti-human melanosome antibodies and the Ca2+-binding property. Upon immunohistochemistry, the anti-dog calnexin antibody revealed the positive immunoreactivities with both normal and malignant human melanocytes, showing a much higher expression of antigenic epitope than nonmelanocytic human cells. The laser scanning confocal immunofluorescence, using an anti-body against a human melanosome-specific antigen (HMSA-5), and immunoelectron microscopy, using immunogold, confirmed the major localization of anti-dog calnexin antibody epitope on the melanosomes and ER.  相似文献   

14.
To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention “receptor” since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.  相似文献   

15.
Brockmeier A  Williams DB 《Biochemistry》2006,45(42):12906-12916
Calnexin is a membrane-bound chaperone of the endoplasmic reticulum (ER) that participates in the folding and quality control of newly synthesized glycoproteins. Binding to glycoproteins occurs through a lectin site with specificity for Glc1Man9GlcNAc2 oligosaccharides as well as through a polypeptide binding site that recognizes non-native protein conformations. The latter interaction is somewhat controversial because it is based on observations that calnexin can suppress the aggregation of non-glycosylated substrates at elevated temperature or at low calcium concentrations, conditions that may affect the structural integrity of calnexin. Here, we examine the ability of calnexin to interact with a non-glycosylated substrate under physiological conditions of the ER lumen. We show that the soluble ER luminal domain of calnexin can indeed suppress the aggregation of non-glycosylated firefly luciferase at 37 degrees C and at the normal resting ER calcium concentration of 0.4 mM. However, gradual reduction of calcium below the resting level was accompanied by a progressive loss of native calnexin structure as assessed by thermal stability, protease sensitivity, intrinsic fluorescence, and bis-ANS binding. These assays permitted the characterization of a single calcium binding site on calnexin with a Kd = 0.15 +/- 0.05 mM. We also show that the suppression of firefly luciferase aggregation by calnexin is strongly enhanced in the presence of millimolar concentrations of ATP and that the Kd for ATP binding to calnexin in the presence of 0.4 mM calcium is 0.7 mM. ATP did not alter the overall stability of calnexin but instead triggered the localized exposure of a hydrophobic site on the chaperone. These findings demonstrate that calnexin is a potent molecular chaperone that is capable of suppressing the aggregation of substrates through polypeptide-based interactions under conditions that exist within the ER lumen.  相似文献   

16.
17.
Most subunits of the alphabeta deltaepsilon gammaepsilon zetazeta T cell antigen receptor (TCR) complex associate with the molecular chaperone calnexin shortly after their synthesis in the endoplasmic reticulum, including clonotypic TCRalpha,beta molecules and invariant CD3gamma,delta,epsilon chains. While calnexin interaction is suggested to be important for the stability of newly synthesized TCRalpha subunits, the role of calnexin in the survival and assembly of remaining TCR components is unknown. Here we evaluated the expression of TCR proteins in CEM T cells and the calnexin-deficient CEM variant CEM.NK(R). We found that CEM and CEM.NK(R) cells constitutively synthesized all TCR subunits except for TCRalpha and that CD3gamma,delta,epsilon components and CD3-beta complexes were effectively assembled together in both cell types. The stability and folding of core CD3epsilon chains were similar in CEM and CEM.NK(R) cells. Interestingly, TCRalpha synthesis was differentially induced by phorbol myristate acetate treatment in CEM and CEM.NK(R) cells and TCRalpha proteins synthesized in CEM.NK(R) cells showed reduced survival compared to those made in CEM cells. Importantly, these data show that TCR complexes were inducibly expressed on CEM.NK(R) cells in the absence of calnexin synthesis. These results demonstrate that TCR complexes can be expressed in the absence of calnexin and suggest that the role of calnexin in the quality control of TCR assembly is primarily restricted to the stabilization of newly synthesized TCRalpha proteins.  相似文献   

18.
Calnexin is a membrane-bound lectin and a molecular chaperone that binds newly synthesized glycoproteins in the endoplasmic reticulum (ER). To analyze the oligomeric properties of calnexin and calnexin-substrate complexes, sucrose velocity gradient centrifugation and chemical cross-linking were used. After CHAPS solubilization of Chinese Hamster Ovary cells, the unoccupied calnexin behaved as a monomer sedimenting at 3.5 S20,W. For calnexin-substrate complexes the S-values ranged between 3.5–8 S20,W, the size increasing with the molecular weight of the substrate. Influenza hemagglutinin, a well-characterized substrate associated with calnexin in complexes that sedimented at 5–5.5 S20,W. The majority of stable complexes extracted from cells, appeared to contain a single calnexin and a single substrate molecule, with about one third of the calnexin in the cell being unoccupied or present in weak associations. However, when chemical cross-linking was performed in intact cells, the calnexin-substrate complexes and calnexin itself was found to be part of a much larger heterogeneous protein network that included other ER proteins. Pulse-chase analysis of influenza-infected cells combined with chemical cross-linking showed that HA was part of large, heterogeneous, cross-linked entities during the early phases of folding, but no longer after homotrimer assembly. The network of weakly associated resident ER chaperones which included BiP, GRP94, calreticulin, calnexin, and other proteins, may serve as a matrix that binds early folding and assembly intermediates and restricts their exit from the ER.  相似文献   

19.
The CD69 glycoprotein is an early activation antigen of T and B lymphocytes and it is constitutively expressed on thymocytes and platelets. Here we report its presence on neutrophils and on bone marrow-derived myeloid precursors. Indeed, promyelocytic cells are CD69+ on the cell membrane, while in resting neutrophils this molecule is located inside the cell. However, intracellular CD69 molecules are rapidly mobilized to the cell surface upon activation by PMA or fMLP. This translocation is independent on a new protein synthesis, as it is not inhibited by cycloheximide; furthermore, CD69 molecules are likely stored in a trans-Golgi structure since their expression is not affected by brefeldin A, a drug that blocks molecular trafficking from ER to Golgi vesicles. Immunoprecipitation of CD69 molecules either from activated neutrophils or from bone marrow cells showed that this protein has the same molecular size (28-34 kDa) as observed in platelets, T and B lymphocytes, and thymocytes. This similarity is reflected also in the functional role played by this molecule: in neutrophils as well as in lymphocytes and platelets, CD69 stimulation induced Ca2+ influx through cellular membrane; furthermore, the perturbation of the CD69 antigen on PMA-activated neutrophils enhances the lysozyme release, suggesting a role of this molecule in the regulation of granule exocytosis, probably through a Ca(2+)-dependent mechanism.  相似文献   

20.
Members of the CD1 family of membrane glycoproteins can present antigenic lipids to T lymphocytes. Like major histocompatibility complex class I molecules, they form a heterodimeric complex of a heavy chain and beta(2)-microglobulin (beta(2)m) in the endoplasmic reticulum (ER). Binding of lipid antigens, however, takes place in endosomal compartments, similar to class II molecules, and on the plasma membrane. Unlike major histocompatibility complex class I or CD1b molecules, which need beta(2)m to exit the ER, CD1d can be expressed on the cell surface as either a free heavy chain or associated with beta(2)m. These differences led us to investigate early events of CD1d biosynthesis and maturation and the role of ER chaperones in its assembly. Here we show that CD1d associates in the ER with both calnexin and calreticulin and with the thiol oxidoreductase ERp57 in a manner dependent on glucose trimming of its N-linked glycans. Complete disulfide bond formation in the CD1d heavy chain was substantially impaired if the chaperone interactions were blocked by the glucosidase inhibitors castanospermine or N-butyldeoxynojirimycin. The formation of at least one of the disulfide bonds in the CD1d heavy chain is coupled to its glucose trimming-dependent association with ERp57, calnexin, and calreticulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号