首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed analyses of habitat associations with rare species are typically constrained by limited sample size and the availability of habitat data. The dense spatial coverage of stream sampling by the Maryland Biological Stream Survey provides ample data to quantitatively examine correlations between habitat and rare species distributions. The shield darter, Percina peltata, has a widespread distribution on the Atlantic Slope of the United States, but is uncommon throughout its range in Maryland. Associations of in situ physical habitat, water chemistry, and alterations in landscape with shield darter presence in the Eastern Piedmont physiographic province in Maryland were examined. Shield darter occurrence was associated with larger sized streams in concordance with the species’ known ecology. Shield darter distribution was further associated with stream segments with deep riffle habitats with diverse velocities, low concentrations of chloride and sulfate, low levels of urbanization in upstream catchments, and several pollution intolerant fish species. Although the exact mechanism of the effects is not clear, results indicate that the shield darter is sensitive to urban development and habitat and water quality alteration that typically accompanies urbanization. Shield darter conservation in Maryland necessitates the protection and restoration of minimally urbanized watersheds where they are known to occur. The results from this study indicate that habitat information on rare species may be important in elucidating important habitat associations that are not evident via examination of community level data.  相似文献   

2.
3.
Distinct fish assemblages were found at the mesohabitat scale in 14 streams in eastern Sabah, Malaysia. Sites were designated a priori as pool, run or riffle on the basis of physical habitat structure and properties. Principal components analysis of physical habitat data confirmed the validity of the a priori designation with a major axis of three correlated variables: water velocity, depth and substratum type. Canonical discriminant analysis on fish abundance and biomass data confirmed the existence of a specialized assemblage of fishes from riffle areas of all streams. Overall, pool and run assemblages were highly variable, dependent on stream size, but also variable between streams of the same size. Multiple regression of species richness, diversity, abundance and biomass data on principal components revealed significant but low correlations with measured habitat variables. Riffle habitats showed lower species richness and diversity but high abundance. The fish assemblage in riffles was dominated by balitorid species, specialized for fast-water conditions. Pool assemblages had the highest species diversity and were dominated by cyprinid species of a number of morphological and ecological guilds. Run assemblages were intermediate in assemblage characteristics between riffle and pool assemblages. Between-stream variation in assemblage composition was less than within-stream variation. Of 38 species collected, seven could be designated as riffle specialists, 18 as pool specialists and 13 as ubiquitous, although most of the latter showed size-specific habitat use with larger size classes found in slower, deeper water.  相似文献   

4.
1. Studies of North American streams have shown that hydraulic parameters and stream geomorphology can explain unionid mussel abundance at both the reach and catchment scale. However, few studies have examined applicability of hydrogeomorphic variables across broader spatial scales, such as across whole catchments, or have elucidated conditions under which spates can affect mussel populations in streams. 2. We quantified freshwater mussel abundance and species richness and their physical habitat at 24 sites in eight streams in southern Appalachian catchments in 2000 and 2001. In addition, we modelled site‐specific hydraulic parameters during summer baseflow and bankfull stages to estimate high‐ and low‐discharge conditions, respectively. 3. Mussel abundance was related to stream geomorphology, whereas richness was related to stream size. Baseflow habitat parameters explained only minor variation in abundance or richness, and both measures were highly correlated with mean current velocity or stream size. Bankfull shear stress composed a relatively low proportion of overall mussel habitat variability, but it accounted for significant variation in abundance and richness. 4. Mussel abundance was highly variable at sites subject to low‐shear stress during spates, whereas abundance always was low at sites subject to high‐shear stress. These data suggest that habitat conditions during floods, rather than those at summer baseflow, limit the abundance of mussels in Appalachian streams. These data also suggest that mussel abundance and assemblage structure may be sensitive to any changes in channel geomorphology and hydraulic conditions that might result from land use in the catchment.  相似文献   

5.
The aim of this research is to assess the effects of oil palm plantations on stream habitat and their fish assemblage diversity. We hypothesize that streams which drain through oil palm plantations tend to be less heterogeneous, limiting the occurrence of many species, than streams that drain through forest fragments, which support higher fish diversity. A total of 17 streams were sampled; eight in forest fragments and nine in oil palm plantations. Environmental and biological variables were sampled along 150 m stretch in each stream. Of the 242 environmental variables measured, ten were considered important to assess the condition of structural habitat, and out of these variables, four were considered relevant in the distinction between streams in oil palm plantations and forest fragments. A total of 7245 fishes were collected, belonging to 63 species. Unlike our original hypothesis, the species richness did not differ between forest fragment and oil palm plantations streams, showing that it is not a good divert measure in streams disturbance assessment. However, fish assemblages differed in species composition, and 56 species were recorded in oil palm plantation streams, while 44 species were recorded in forest fragments streams. Some species were identified as indicators of either altered (Aequidens tetramerus and Apistogramma agassizii) or undisturbed areas (Helogenes marmoratus). Overall, oil palm plantations were proven to change stream habitat structure and fish species distribution, corroborating other studies that have evidenced changes in patterns of biological community structure due to impacts by different land uses.  相似文献   

6.
This study was designed to: (1) evaluate the ecological status of acid-sensitive and non acid-sensitive Maryland coastal plain streams using biological (Index of biotic Integrity [IBI] for fish), chemical and physical habitat conditions; (2) determine if a low IBI for coastal plain stream fish can be related to stream sensitivity from acidic inputs and (3) correlate land use activities and watershed size in the coastal plain streams with biological, chemical and physical conditions. IBI values obtained using 12 community metrics for Maryland coastal plain stream fish demonstrated that there were no significant differences in these values when acid-sensitive and non-acid-sensitive streams were compared. However, other complementary data in acid-sensitive streams such as absence of the acid-sensitive species, blacknose dace and higher numbers and biomass of tolerant species suggested that these streams may be impacted. IBI values were also found to be negatively correlated with various trace metals in acid-sensitive streams but not in non-acid-sensitive areas. Chemical conditions such as trace metals and nutrients were associated with land use activities. Highest concentrations of trace metals (chromium, nickel, and cadmium) were found in streams with the highest percentage of low residential housing. Nitrate concentrations were significantly higher in streams found in agricultural areas than in forested areas. Agriculturally dominated streams with highest nitrate concentrations (> 10 mg l-1) also contained the highest percentage of livestock feeding operations. The mean IBI score for streams draining agricultural land was higher than the mean value for forested streams when all streams were compared. However, when several streams that were only marginally forested (< 50%) were removed from the analysis, the IBI scores did not differ significantly by land use. Two physical habitat indices exhibited a strong associated with each other. Each habitat index also correlated with IBI values.  相似文献   

7.
The rainbow darter Etheostoma caeruleum is a small fish in the perch family (Percidae) that is adapted to fast‐flowing streams in eastern North America. It is relatively sensitive to habitat degradation and is widely used as a sentinel of stream condition. To provide a complementary tool for assessing the integrity of stream ecosystems, 16 highly polymorphic tetranucleotide microsatellite markers were identified for these darters. Between four and 16 loci were found to be useful in five congeneric species. These markers will be useful for characterizing population genetic structure and diversity of rainbow darters and related fishes.  相似文献   

8.
Stream fish assemblages are structured by biogeographical, physical and biological factors acting on different spatial scales. We determined how physical factors, geomorphology and stream habitat, influenced fish species composition (presence–absence) in eastern Oklahoma, USA relative to the ecoregion and biogeographic effects previously reported. We sampled fish assemblages and surveyed geomorphology and habitat at 107 stream sites in the Boston Mountains, Ouachita Mountains, and Ozark Highlands ecoregions in eastern Oklahoma. Partial canonical correspondence analyses (pCCAs) and variance partitioning showed that patterns of endemism related to drainage basins and ecoregions explained important variation in fish species composition in all streams, but stream size and local channel morphology explained more variation overall. Stream size effects were most important in explaining variability in fish species composition in both northeastern and southeastern Oklahoma streams. Local channel morphology and substrate characteristics were secondarily important. Variables typically considered important as fish habitat (aquatic vegetation, etc.) had little effect on fish species composition.  相似文献   

9.
Relationships between the fish community and selected habitat features were examined in a set of short temperate streams located at the northern end of the Iberian Peninsula. The fish fauna in these streams consists mostly of diadromous or estuarine species. Species richness and diversity increased with stream order, depth and width and decreased with elevation and distance from the sea. Stream order (positively) and elevation (negatively) were the two variables most highly correlated with species richness and diversity; higher order streams (order 3–4) showed greater values of species diversity than lower order ones (order 1) even when the elevation effect was removed. Addition of species in the downstream direction, but no replacement or loss was evidenced. We also compared the observed values of species diversity with those predicted from habitat features for a set of locations above unpassable dams. A great majority of the sites showed lower than predicted diversity values, which is an expected outcome for this mainly migratory fish fauna.  相似文献   

10.
Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.   总被引:7,自引:0,他引:7  
1. We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20–40 times stream width). 2. Non‐metric multidimensional scaling (NMDS) identified 85% of the among‐site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter‐cyprinid‐redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3. Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60–0.82) by reach‐level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4. Our results contrast with the ‘River Continuum Concept’ which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ‘Process Domains Concept’, which argues that local‐scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities.  相似文献   

11.
In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid‐ and late‐21st‐century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach‐scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9–10% and 13–16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher‐gradient streams that provide only moderate‐quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach‐scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream networks will hamper efforts to understand and mitigate the vulnerability of anadromous fish habitat to climate‐induced hydrologic change.  相似文献   

12.
Large-scale culvert replacement programs could benefit migratory fish populations by reconnecting reproductive and foraging habitats in fragmented watersheds. The objectives of this study were to: (1) identify stream and culvert characteristics contributing to fish passage barriers within an Appalachian watershed, U.S.A.; (2) quantify the total amount of Brook trout ( Salvelinus fontinalis ) reproductive habitat isolated above culverts; and (3) use an ecological currency to identify culvert replacement priorities and stream mitigation credit opportunities. We surveyed 120 state-owned culverts and used a fish passage assessment filter to determine the "passability" of each culvert. We then constructed a geographic information system stream network model to quantify the amount of trout reproductive habitat isolated by culverts. Ninety-seven percent of surveyed culverts were classified as obstacles or complete barriers to trout dispersal. Culvert impassability was higher in small streams with slopes exceeding 3–5%, suggesting a direct relationship between slope and impassability. Thirty-three percent of Brook trout reproductive habitat, representing over 200 km of stream, was isolated by culverts. This is a conservative estimate, because we did not survey privately or federally owned culverts. The top 20 prioritized culverts accounted for nearly half of the habitat loss. Our results indicate that standard culvert designs placed in streams with slopes exceeding 5% consistently produce trout dispersal barriers and should be avoided during new road construction. The process developed here provides an efficient method for identifying culvert replacement priorities and may be used to maximize watershed scale benefits of stream restoration.  相似文献   

13.
Genetic, demographic, and environmental processes affect natural populations synergistically, and understanding their interplay is crucial for the conservation of biodiversity. Stream fishes in metapopulations are particularly sensitive to habitat fragmentation because persistence depends on dispersal and colonization of new habitat but dispersal is constrained to stream networks. Great Plains streams are increasingly fragmented by water diversion and climate change, threatening connectivity of fish populations in this ecosystem. We used seven microsatellite loci to describe population and landscape genetic patterns across 614 individuals from 12 remaining populations of Arkansas darter (Etheostoma cragini) in Colorado, a candidate species for listing under the U.S. Endangered Species Act. We found small effective population sizes, low levels of genetic diversity within populations, and high levels of genetic structure, especially among basins. Both at- and between-site landscape features were associated with genetic diversity and connectivity, respectively. Available stream habitat and amount of continuous wetted area were positively associated with genetic diversity within a site, while stream distance and intermittency were the best predictors of genetic divergence among sites. We found little genetic contribution from historic supplementation efforts, and we provide a set of management recommendations for this species that incorporate a conservation genetics perspective.  相似文献   

14.
We demonstrate the use of multiple indicators to characterize the ecological integrity of a coastal plain stream system in the New Jersey Pinelands in relation to human-induced watershed alterations. The individual indicators include pH, specific conductance, stream vegetation and stream-fish, impoundment-fish, and anuran assemblages. We evaluate and compare the utility of the individual and multiple environmental and biological indicators and present a relatively straightforward method for ranking sites. Specific conductance and pH measured at 88 monitoring sites varied in relation to the percentage of altered land (developed land and upland agriculture) within the associated watersheds. All three environmental variables were associated with variations in the composition of stream vegetation and stream fish, impoundment fish, and anuran assemblages. With the exception of impoundment fish, the association between altered land and the multiple-indicator scores based on the two water-quality indicators and the four biological indicators was stronger than that displayed by any of the individual variables.  相似文献   

15.
Synopsis Patterns of ecotopic variation in the population structure of two common and relatedPercina species were examined among seven central Gulf-Coast stream sites by Kendall's concordance tests, revealing four complexes of variables with significant covariation from a total of 18 population and habitat variables. The first complex comprised three interrelated habitat variables, implying that mid-stream surface current varied inversely with both instream cover and substrate heterogeneity. The second complex of five interrelated variables revealed (1) that darter abundance was better correlated with the area of instream cover than with total area, and (2) that site density [number m-2] varied inversely with site area. Along with three other variables, cover density (number per square meter of instream cover) formed a third complex, demonstrating resource complementarity between instream cover and macroinvertebrate abundance. Variables within the fourth complex all increased concomitantly with the key variable of mean darter size, including body-size diversity, biomass, relative abundance of the two darter species and mid-stream depth. Within the study region, local ecological factors largely regulate distributions, abundances and size-structures ofPercina populations, apparently even outweighing the effects of stochastic and historical factors  相似文献   

16.
Life-history traits of invasive fish in small Mediterranean streams   总被引:3,自引:3,他引:0  
We compared the life-history traits of native and invasive fish species from Catalan streams in order to identify the characters of successful invasive fish species. Most of the exotic fish species were characterized by large size, long longevity, late maturity, high fecundity, few spawnings per year, and short reproductive span, whereas Iberian native species exhibited predominantly the opposite suite of traits. Species native to the southeastern Pyrenees watershed were also significantly different from species native to the rest of the Iberian Peninsula but not native to this watershed. Iberian exotic species come predominantly from large river basins, whereas Catalan streams (and other small, coastal river basins) correspond to basins and streams of a smaller size and different hydrology, with differences in species composition and life-history traits of fish. The occurrence and spread of invasive species was not significantly related to life-history traits but to introduction date. The successful prediction of future invasive species is limited due to small differences in life-history and ecological traits between native and exotic species. Fecundity, age at maturity, water quality flexibility, tolerance to pollution and habitat seem the most discriminating life-history variables. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
黄山陈村水库上游河源溪流的鱼类群落及其纵向梯度格局   总被引:1,自引:0,他引:1  
确定鱼类群落的分布格局及其对人类活动的响应,是合理保护、恢复和管理鱼类多样性的基础。基于2011年5月和10月自黄山陈村水库上游3条河源溪流共39个样点的调查数据,比较研究了溪流间鱼类群落及其纵向梯度格局的异同,着重探讨了人类活动对溪流鱼类群落纵向梯度格局的影响。研究结果显示,同人为干扰较轻的舒溪相比,人为干扰严重的浦溪和麻溪中水宽、底质和植被覆盖率等局域栖息地条件显著变化,这造成了后者的鱼类多样性显著下降及物种组成的显著变化,主要表现为敏感性的地方物种(如宽鳍鱲、光唇鱼、原缨口鳅等)数量减少、耐受性的广布物种(如泥鳅、麦穗鱼、高体鰟鲏等)数量增多。舒溪的鱼类物种数及其组成均与海拔显著相关,但这种"海拔-鱼类群落"关系在麻溪和浦溪中削弱甚至消失。底质、植被覆盖率对舒溪鱼类群落具有重要影响,但对浦溪和麻溪鱼类群落却无显著影响。研究结果表明,在子流域空间尺度上,诸如城镇化发展、土地利用、河道治理等人类活动可通过对局域栖息地条件的影响,导致溪流鱼类多样性下降及其物种组成的变化,破坏鱼类群落的纵向梯度格局,并改变栖息地与鱼类群落之间的联系。  相似文献   

18.
Changes in land use have manifold effects on stream ecosystems. Consequently, the degradation of watersheds can cause extreme responses if the resilience of the stream is exceeded, triggering changes in fish communities and a reorganization of the ecosystem. Fish community surveys are frequently used to evaluate the impact of anthropogenic pressures on freshwater streams. Dynamic indices such as individual growth are also interesting because they integrate the effects of environmental conditions through time, providing an assessment in the long term. In this study we have investigated the ecological implications of watershed land use cover on fish diversity and growth of the generalist species Umbra limi (central mudminnow) in six streams in Southern Ontario (Canada). In detail, the growth of U. limi has been explored using a Dynamic Energy Budget (DEB) model, which pursues a mechanistic explanation of the bioenergetics of an individual under different environmental conditions. Given the mechanistic approach, the outcomes of the DEB model can provide a solid foundation for extrapolating the conclusions of this study to a broader spatial scale. The results of this study reveal that the proportion of modified land use of the watershed (agricultural and urban land) can reach a tipping point beyond which the functioning of the stream abruptly changes. Consequently, land use cover may be used as a precautionary indicator for watershed management. The results also demonstrate that U. limi could be used as a sentinel species to identify potential impacts on fish diversity and size-at-age as a cost-effective indicator for stream monitoring programs.  相似文献   

19.
The presence of riparian vegetation provides microclimatic regulation of stream conditions [e.g. luminosity (lux), air temperature (°C) and relative humidity (%)], which varies naturally throughout the day. These variables explain the diurnal behaviour patterns of ectotherms such as Odonata in natural areas. However, human land uses (e.g. pastures) modify the abiotic conditions of riparian environments, favouring the presence of disturbance-tolerant species. In this context, we assess relationships between riparian land use (control streams-natural areas and pasture), abiotic conditions habitat integrity index (in control and pastures streams), (air temperature, luminosity and humidity in control streams), and Odonata diversity (between pasture and control streams and throughout the time of day) in Brazilian savannah (Cerrado) streams. First, the control streams had higher habitat integrity index than pasture. Higher abundance and difference in composition of Odonata species were observed in streams surrounded by pasture relative to natural areas. The conversion of natural areas to pasture near streams was also accompanied by an increase in overall body size of Odonata species. Odonata species richness and abundance in natural areas varied throughout the day, but peaked around 12:00 h, coinciding with changes in air temperature and luminosity. Our study highlights that changes in the physical characteristics of streams through conversion of natural habitats to pasture will change environmental conditions and act as a filter on the distribution and persistence of Odonata species in Cerrado streams.  相似文献   

20.
Over the past few decades, land-use changes through conversion of global forest cover to exotic plantations is contributing to both habitat and biodiversity loss and species extinctions. To better understand human influences on ecosystem, we use diet composition from introduced Rainbow Trout Oncorhynchus mykiss as indicator of potential changes in the composition of stream-macroinvertebrates due to land use changes from native to exotic vegetation (eucalyptus plantations) in southern Chile. Water quality variables, aquatic macroinvertebrates and Rainbow Trout diet were studied in 12 sites from mountain streams located in two watersheds including one dominated by native riparian vegetation and the other dominated by exotic vegetation. As expected, richness and abundance of macroinvertebrates were clearly higher at sites in native forest than in those with exotic vegetation. Collector-gatherer was the most abundant functional feeding group, but there was no statistical difference in the functional composition between the two watersheds. Differences in in-stream macroinvertebrate availability was more higher correlated with changes in Rainbow Trout diets. Specifically, taxa consumed from the watershed dominated by native forests was higher than from the watershed with exotic vegetation. Additional environmental variables showed statistical differences between watersheds. The exotic vegetation sites had the highest concentrations of dissolved solids, suspended solids, nitrates, chlorides and sulphates. Our findings show that macroinvertebrate assemblage structure and trout diets can be altered by changes in riparian vegetation. The absence of specific macroinvertebrate taxa in streams with exotic vegetation was captured by the composition of trout diets. This suggest that Rainbow Trout diets can be a good biological indicator of land use practices and thus, diet can be used as a rapid and effective tool for evaluate environmental quality. Our findings provide insights about the design of aquatic monitoring programmes to improve detection of anthropogenic impacts in streams in South America and elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号