共查询到20条相似文献,搜索用时 0 毫秒
1.
Schaar V de Vries SP Perez Vidakovics ML Bootsma HJ Larsson L Hermans PW Bjartell A Mörgelin M Riesbeck K 《Cellular microbiology》2011,13(3):432-449
Moraxella catarrhalis is an emerging human respiratory pathogen in patients with chronic obstructive pulmonary disease (COPD) and in children with acute otitis media. The specific secretion machinery known as outer membrane vesicles (OMVs) is a mechanism by which Gram-negative pathogens interact with host cells during infection. We identified 57 proteins in M. catarrhalis OMVs using a proteomics approach combining two-dimensional SDS-PAGE and MALDI-TOF mass spectrometry analysis. The OMVs contained known surface proteins such as ubiquitous surface proteins (Usp) A1/A2, and Moraxella IgD-binding protein (MID). Most of the proteins are adhesins/virulence factors triggering the immune response, but also aid bacteria to evade the host defence. FITC-stained OMVs bound to lipid raft domains in alveolar epithelial cells and were internalized after interaction with Toll-like receptor 2 (TLR2), suggesting a delivery to the host tissue of a large and complex group of OMV-attributed proteins. Interestingly, OMVs modulated the pro-inflammatory response in epithelial cells, and UspA1-bearing OMVs were found to specifically downregulate the reaction. When mice were exposed to OMVs, a pulmonary inflammation was clearly seen. Our findings indicate that Moraxella OMVs are highly biologically active, transport main bacterial virulence factors and may modulate the epithelial pro-inflammatory response. 相似文献
2.
Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn's lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures. 相似文献
3.
Kamruddin Ahmed Keizo Matsumoto Naoto Rikitomi Tsuyoshi Nagatake 《FEMS microbiology letters》1996,135(2-3):305-309
Abstract Moraxella catarrhalis is one of the major pathogens of respiratory infections and has the ability to attach to the pharyngeal cells via fimbriae. We characterized the epithelial cell receptor to which fimbriate M. catarrhalis binds. Neuraminidase pretreatment of pharyngeal epithelial cells resulted in a significant decrease of M. catarrhalis attachment, suggesting interaction with the sialic acid component. The attachment was not decreased in M. catarrhalis pretreated with 2 and 1 mg/ml of fucose, N -acetyl-neuraminic acid, N -acetyl-glucosamine, N -acetyl-galactosamine, acetyl-salicylic acid and colominic acid. However, M. catarrhalis treated with gangliosides M1, M2, D1a, D1b and T1a at a concentration of 2.5 μg/ml had significantly decreased the attachment compared to the control. In contrast treatment with gangliosides M3 and asialoganglioside M1 did not decrease the attachment of M. catarrhalis and thereby provided evidence for specificity of the inhibition. Concentration dependent effects of ganglioside M2 on the attachment were also observed. Other fimbriate isolates of M. catarrhalis showed decrease in attachment after treatment with ganglioside M2. However there was no effect on attachment when a nonfimbriate isolate was treated with ganglioside M2. This study indicates that the receptor of fimbriate M. catarrhalis on pharyngeal epithelial cells resides in the sequences of ganglioside M2. 相似文献
4.
5.
Invasion of non-professional phagocytes is a strategy employed by several mucosal pathogens, but has not been investigated in detail for Moraxella catarrhalis, a major cause of human respiratory tract infections. We investigated the role of outer membrane protein (OMP) UspA1 and lipooligosaccharide (LOS) in M. catarrhalis invasion into epithelial cells. An isogenic mutant of strain O35E, which lacked expression of the UspA1 adhesin, demonstrated not only severely impaired adherence (86%) to but also reduced invasion (77%) into Chang conjunctival cells in comparison with the wild-type strain. The isogenic, LOS-deficient mutant strain O35E.lpxA was attenuated in adherence (93%) and its capacity to invade was severely reduced (95%), but not abolished. Inhibition assays using sucrose and cytochalasin D, respectively, demonstrated that clathrin and actin polymerization contribute to internalization of M. catarrhalis by Chang cells. Furthermore, inhibition of UspA1-mediated binding to cell-associated fibronectin and alpha5beta1 integrin decreased invasion of M. catarrhalis strain O35E (72% and 41%, respectively). These data indicate that OMP UspA1 and LOS profoundly affect the capacity of M. catarrhalis to invade epithelial cells. 相似文献
6.
Fink J Mathaba LT Stewart GA Graham PT Steer JH Joyce DA McWilliam AS 《FEMS immunology and medical microbiology》2006,46(2):198-208
The outer membrane proteins of Moraxella catarrhalis, a bacterial pathogen which causes disease in both children and adults, play an important role in its phenotypic properties. However, their proinflammatory potential with regard to respiratory epithelium and macrophages is unclear. To this end, we examined the cytokine- and mediator-inducing capacity of a heat-killed wild-type M. catarrhalis strain and a nonautoagglutinating mutant as well as their outer membrane proteins and secretory/excretory products using the A549 respiratory epithelial cell line. The outer membrane proteins and secretory/excretory products from both isolates as well as the heat-killed bacteria all induced interleukin (IL)-6, IL-8 and prostaglandin E2, but not IL-1beta, from the A549 cell line in a dose- and time-dependent manner. Heat-killed bacteria and secretory/excretory products stimulated the release of IL-1beta, IL-6, IL-8 and prostaglandin E2 from human monocyte-derived macrophages. Both heat-killed isolates also stimulated nuclear translocation and transactivation of nuclear factor-kappaB. The heat-killed wild-type autoagglutinating isolate induced significantly greater amounts of IL-6 and IL-8 from A549 cells than the nonautoagglutinating mutant compared with the monocyte-derived macrophages but no significant differences in the amounts induced by the two strains were observed. These differences were also evident when the respiratory cell line was stimulated with outer membrane proteins as well as in the degree of nuclear factor-kappaB transactivation. There was little difference in the stimulatory activity of the secretory/excretory products. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses revealed some differences in the outer membrane proteins and secretory excretory products between the two isolates. Combined, these data show that M. catarrhalis secretory excretory products and outer membrane proteins are associated with the induction of inflammatory responses in both respiratory epithelium and macrophages. 相似文献
7.
The UspA1 protein and a second type of UspA2 protein mediate adherence of Moraxella catarrhalis to human epithelial cells in vitro 下载免费PDF全文
Lafontaine ER Cope LD Aebi C Latimer JL McCracken GH Hansen EJ 《Journal of bacteriology》2000,182(5):1364-1373
The UspA1 and UspA2 proteins of Moraxella catarrhalis are structurally related, are exposed on the bacterial cell surface, and migrate as very high-molecular-weight complexes in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Previous analysis of uspA1 and uspA2 mutants of M. catarrhalis strain 035E indicated that UspA1 was involved in adherence of this organism to Chang conjunctival epithelial cells in vitro and that expression of UspA2 was essential for resistance of this strain to killing by normal human serum (C. Aebi, E. R. Lafontaine, L. D. Cope, J. L. Latimer, S. R. Lumbley, G. H. McCracken, Jr., and E. J. Hansen, Infect. Immun. 66:3113-3119, 1998). In the present study, isogenic uspA1, uspA2, and uspA1 uspA2 mutations were constructed in three additional M. catarrhalis strains: 012E, TTA37, and 046E. The uspA1 mutant of strain 012E had a decreased ability to attach to Chang cells. However, inactivation of the uspA1 gene in both strain TTA37 and strain 046E did not cause a significant decrease in attachment ability. Inactivation of the uspA2 gene of strain TTA37 did result in a loss of attachment ability. Nucleotide sequence analysis revealed that the predicted protein encoded by the uspA2 genes of both strains TTA37 and 046E had a N-terminal half that resembled the N-terminal half of UspA1 proteins, whereas the C-terminal half of this protein was nearly identical to those of previously characterized UspA2 proteins. The gene encoding this "hybrid" protein was designated uspA2H. PCR-based analysis revealed that approximately 20% of M. catarrhalis strains apparently possess a uspA2H gene instead of a uspA2 gene. The M. catarrhalis uspA1, uspA2, and uspA2H genes were cloned and expressed in Haemophilus influenzae cells, which were used to prove that both the UspA1 and UspA2H proteins can function as adhesins in vitro. 相似文献
8.
Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells 总被引:14,自引:0,他引:14
Vora P Youdim A Thomas LS Fukata M Tesfay SY Lukasek K Michelsen KS Wada A Hirayama T Arditi M Abreu MT 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(9):5398-5405
The intestinal epithelium serves as a barrier to the intestinal flora. In response to pathogens, intestinal epithelial cells (IEC) secrete proinflammatory cytokines. To aid in defense against bacteria, IEC also secrete antimicrobial peptides, termed defensins. The aim of our studies was to understand the role of TLR signaling in regulation of beta-defensin expression by IEC. The effect of LPS and peptidoglycan on beta-defensin-2 expression was examined in IEC lines constitutively or transgenically expressing TLRs. Regulation of beta-defensin-2 was assessed using promoter-reporter constructs of the human beta-defensin-2 gene. LPS and peptidoglycan stimulated beta-defensin-2 promoter activation in a TLR4- and TLR2-dependent manner, respectively. A mutation in the NF-kappaB or AP-1 site within the beta-defensin-2 promoter abrogated this response. In addition, inhibition of Jun kinase prevents up-regulation of beta-defensin-2 protein expression in response to LPS. IEC respond to pathogen-associated molecular patterns with expression of the antimicrobial peptide beta-defensin-2. This mechanism may protect the intestinal epithelium from pathogen invasion and from potential invaders among the commensal flora. 相似文献
9.
Epithelial cells are the first cells that encounter infecting bacteria and, as such, they have developed several mechanisms for microbial protection. We have shown previously that bladder epithelial cells express the lipopolysaccharide (LPS) receptor Toll-like receptor (TLR) 4 that enables a rapid cellular interleukin (IL)-8 response when exposed to Escherichia coli and LPS. TLR4 belongs to a family of receptors that was initially identified in Drosophila, in which Toll is required for the immune response against fungi. Fungal exposure activates a series of serine proteases that process the protein Spaetzle to a cytokine-like form that acts as a ligand for Toll. Here, we investigated whether a similar proteolytic cascade is required for human TLR activation. When screening a set of 18 protease inhibitors, three serine protease inhibitors (TPCK, TLCK and Pefabloc) were shown to inhibit LPS- and peptidoglycan-induced IL-8 production in TLR2- and TLR4-positive bladder epithelial cells. However, they were equally effective inhibitors of IL-1beta-induced signalling, indicating that their target(s) is/are located downstream of the TLRs. Further characterization showed that these inhibitors blocked I kappa B degradation but not phosphorylation in LPS-stimulated cells, which suggests that the serine protease inhibitors target the 26S proteasome. Identical results were obtained on LPS-stimulated monocytes. Based on these data, we find no evidence for the involvement of proteases upstream of TLRs in either epithelial cells or cells of the monocytic lineage. 相似文献
10.
Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion 总被引:3,自引:0,他引:3
Rosenstiel P Sina C End C Renner M Lyer S Till A Hellmig S Nikolaus S Fölsch UR Helmke B Autschbach F Schirmacher P Kioschis P Hafner M Poustka A Mollenhauer J Schreiber S 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(12):8203-8211
Mucosal epithelial cell layers are constantly exposed to a complex resident microflora. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by pathogen binding. This report describes the regulation and function of DMBT1 in intestinal epithelial cells, which form the primary immunological barrier for invading pathogens. We report that intestinal epithelial cells up-regulate DMBT1 upon proinflammatory stimuli (e.g., TNF-alpha, LPS). We demonstrate that DMBT1 is a target gene for the intracellular pathogen receptor NOD2 via NF-kappaB activation. DMBT1 is strongly up-regulated in the inflamed intestinal mucosa of Crohn's disease patients with wild-type, but not with mutant NOD2. We show that DMBT1 inhibits cytoinvasion of Salmonella enterica and LPS- and muramyl dipeptide-induced NF-kappaB activation and cytokine secretion in vitro. Thus, DMBT1 may play an important role in the first line of mucosal defense conferring immune exclusion of bacterial cell wall components. Dysregulated intestinal DMBT1 expression due to mutations in the NOD2/CARD15 gene may be part of the complex pathophysiology of barrier dysfunction in Crohn's disease. 相似文献
11.
Chen X Quinn EM Ni H Wang J Blankson S Redmond HP Wang JH Feng X 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(1):347-355
In addition to a well-documented role in regulating T cell-mediated immune responses, B7-H3, a newly discovered member of the B7 superfamily, has been recently identified as a costimulator in the innate immunity-mediated inflammatory response. In this study, we further report that B7-H3 participates in the development of pneumococcal meningitis in a murine model. Exogenous administration of B7-H3 strongly amplified the inflammatory response, exacerbated blood-brain barrier disruption, and aggravated the clinical disease status in Streptococcus pneumoniae-infected C3H/HeN wild-type mice. Consistent with the in vivo findings, B7-H3 substantially augmented proinflammatory cytokine and chemokine production, upregulated NF-κB p65 and MAPK p38 phosphorylation, and enhanced the nuclear transactivation of NF-κB p65 at both TNF-α and IL-6 promoters in S. pneumoniae-stimulated primary murine microglia cells. These B7-H3-associated in vitro and in vivo effects appeared to be dependent on TLR2 signaling, as B7-H3 almost completely lost its amplifying actions in both TLR2-deficient microglial cells and TLR2-deficient mice. Furthermore, administration of the anti-B7-H3 mAb (MIH35) attenuated the inflammatory response and ameliorated blood-brain barrier disruption in S. pneumoniae-infected wild-type mice. Collectively, our results indicate that B7-H3 plays a contributory role in the development of S. pneumoniae infection-induced bacterial meningitis. 相似文献
12.
13.
In vivo ethanol exposure down-regulates TLR2-, TLR4-, and TLR9-mediated macrophage inflammatory response by limiting p38 and ERK1/2 activation 总被引:6,自引:0,他引:6
Ethanol is known to increase susceptibility to infections, in part, by suppressing macrophage function. Through TLRs, macrophages recognize pathogens and initiate inflammatory responses. In this study, we investigated the effect of acute ethanol exposure on murine macrophage activation mediated via TLR2, TLR4, and TLR9. Specifically, the study focused on the proinflammatory cytokines IL-6 and TNF-alpha and activation of p38 and ERK1/2 MAPKs after a single in vivo exposure to physiologically relevant level of ethanol followed by ex vivo stimulation with specific TLR ligands. Acute ethanol treatment inhibited IL-6 and TNF-alpha synthesis and impaired p38 and ERK1/2 activation induced by TLR2, TLR4, and TLR9 ligands. We also addressed the question of whether ethanol treatment modified activities of serine/threonine-specific, tyrosine-specific phosphatases, and MAPK phosphatase type 1. Inhibitors of three families of protein phosphatases did not restore ethanol-impaired proinflammatory cytokine production nor p38 and ERK1/2 activation. However, inhibitors of serine/threonine protein phosphatase type 1 and type 2A significantly increased IL-6 and TNF-alpha levels, and prolonged activation of p38 and ERK1/2 when triggered by TLR4 and TLR9 ligands. In contrast, with TLR2 ligand stimulation, TNF-alpha production was reduced, whereas IL-6 levels, and p38 and ERK1/2 activation were not affected. In conclusion, acute ethanol exposure impaired macrophage responsiveness to multiple TLR agonists by inhibiting IL-6 and TNF-alpha production. Mechanism responsible for ethanol-induced suppression involved inhibition of p38 and ERK1/2 activation. Furthermore, different TLR ligands stimulated IL-6 and TNF-alpha production via signaling pathways, which showed unique characteristics. 相似文献
14.
15.
Chassin C Goujon JM Darche S du Merle L Bens M Cluzeaud F Werts C Ogier-Denis E Le Bouguénec C Buzoni-Gatel D Vandewalle A 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(7):4773-4784
TLR4 plays a central role in resistance to pyelonephritis caused by uropathogenic Escherichia coli (UPEC). It has been suggested that renal tubule epithelial cells expressing TLRs may play a key role in inflammatory disorders and in initiating host defenses. In this study we used an experimental mouse model of ascending urinary tract infection to show that UPEC isolates preferentially adhered to the apical surface of medullary collecting duct (MCD) intercalated cells. UPEC-infected C3H/HeJ (Lps(d)) mice carrying an inactivating mutation of tlr4 failed to clear renal bacteria and exhibited a dramatic slump in proinflammatory mediators as compared with infected wild-type C3H/HeOuJ (Lps(n)) mice. However, the level of expression of the leukocyte chemoattractants MIP-2 and TNF-alpha still remained greater in UPEC-infected than in naive C3H/HeJ (Lps(d)) mice. Using primary cultures of microdissected Lps(n) MCDs that expressed TLR4 and its accessory molecules MD2, MyD88, and CD14, we also show that UPECs stimulated both a TLR4-mediated, MyD88-dependent, TIR domain-containing adaptor-inducing IFN-beta-independent pathway and a TLR4-independent pathway, leading to bipolarized secretion of MIP-2. Stimulation by UPECs of the TLR4-mediated pathway in Lps(n) MCDs leads to the activation of NF-kappaB, and MAPK p38, ERK1/2, and JNK. In addition, UPECs stimulated TLR4-independent signaling by activating a TNF receptor-associated factor 2-apoptosis signal-regulatory kinase 1-JNK pathway. These findings demonstrate that epithelial collecting duct cells are actively involved in the initiation of an immune response via several distinct signaling pathways and suggest that intercalated cells play an active role in the recognition of UPECs colonizing the kidneys. 相似文献
16.
The bacterial determinants of pulmonary Francisella induced inflammatory responses and their interaction with host components are not clearly defined. In this study, proteomic and immunoblot analyses showed presence of a cytoplasmic protein elongation factor Tu (EF-Tu) in the membrane fractions of virulent Francisella novicida, LVS and SchuS4, but not in an attenuated F. novicida mutant. EF-Tu was immunodominant in mice vaccinated and protected from virulent F. novicida. Moreover, recombinant EF-Tu induced macrophages to produce inflammatory cytokines in a TLR4 dependent manner. This study shows immune stimulatory properties of a cytoplasmic protein EF-Tu expressed on the membrane of virulent Francisella strains. 相似文献
17.
Lepanto P Bryant DM Rossello J Datta A Mostov KE Kierbel A 《Cellular microbiology》2011,13(8):1212-1222
Growing evidence is pointing to the importance of multicellular bacterial structures in the interaction of pathogenic bacteria with their host. Transition from planktonic to host cell-associated multicellular structures is an essential infection step that has not been described for the opportunistic human pathogen Pseudomonas aeruginosa. In this study we show that P. aeruginosa interacts with the surface of epithelial cells mainly forming aggregates. Dynamics of aggregate formation typically follow a sigmoidal curve. First, a single bacterium attaches at cell-cell junctions. This is followed by rapid recruitment of free-swimming bacteria and association of bacterial cells resulting in the formation of an aggregate on the order of minutes. Aggregates are associated with phosphatidylinositol 3,4,5-trisphosphate (PIP3)-enriched host cell membrane protrusions. We further show that aggregates can be rapidly internalized into epithelial cells. Lyn, a member of the Src family tyrosine kinases previously implicated in P. aeruginosa infection, mediates both PIP3-enriched protrusion formation and aggregate internalization. Our results establish the first framework of principles that define P. aeruginosa transition to multicellular structures during interaction with host cells. 相似文献
18.
Sara Fernandez‐Lizarbe Jorge Montesinos Consuelo Guerri 《Journal of neurochemistry》2013,126(2):261-273
Alcohol consumption can induce brain damage, demyelination, and neuronal death, although the mechanisms are poorly understood. Toll‐like receptors are sensors of the innate immune system and their activation induces inflammatory processes. We have reported that ethanol activates and recruits Toll‐like receptor (TLR)4 receptors within the lipid rafts of glial cells, triggering the production of inflammatory mediators and causing neuroinflammation. Since TLR2 can also participate in the glial response and in the neuroinflammation, we investigate the effects of ethanol on TLR4/TLR2 responses. Here, we demonstrate that ethanol up‐regulates TLR4 and TLR2 expression in microglial cells, inducing the production of inflammatory mediators which triggers reactive oxygen species generation and neuronal apoptosis. Ethanol also promotes TLR4/TLR2 recruitment into lipid rafts‐caveolae, mimicking their activation by their ligands, lipopolysaccharide, and lipoteichoic acid (LTA). Immunoprecipitation and confocal microscopy studies reveal that ethanol induces a physical association between TLR2 and TLR4 receptors, suggesting the formation of heterodimers. Using microglia from either TLR2 or TLR4 knockout mice, we show that TLR2 potentiates the effects of ethanol on the TLR4 response reflected by the activation of MAPKs and inducible NO synthase. In summary, we provide evidence for a mechanism by which ethanol triggers TLR4/TLR2 association contributing to the neuroinflammation and neurodegeneration associated with alcohol abuse. 相似文献
19.
Bas S Neff L Vuillet M Spenato U Seya T Matsumoto M Gabay C 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(2):1158-1168
Chlamydiae components and signaling pathway(s) responsible for the production of proinflammatory cytokines by human monocytes/macrophages are not clearly identified. To this aim, Chlamydia trachomatis-inactivated elementary bodies (EB) as well as the following seven individual Ags were tested for their ability to induce the production of proinflammatory cytokines by human monocytes/macrophages and THP-1 cells: purified LPS, recombinant heat shock protein (rhsp)70, rhsp60, rhsp10, recombinant polypeptide encoded by open reading frame 3 of the plasmid (rpgp3), recombinant macrophage infectivity potentiator (rMip), and recombinant outer membrane protein 2 (rOmp2). Aside from EB, rMip displayed the highest ability to induce release of IL-1beta, TNF-alpha, IL-6, and IL-8. rMip proinflammatory activity could not be attributed to Escherichia coli LPS contamination as determined by the Limulus Amoebocyte lysate assay, insensitivity to polymyxin B (50 microg/ml), and different serum requirement. We have recently demonstrated that Mip is a "classical" bacterial lipoprotein, exposed at the surface of EB. The proinflammatory activity of EB was significantly attenuated in the presence of polyclonal Ab to rMip. Native Mip was able to induce TNF-alpha and IL-8 secretion, whereas a nonlipidated C20A rMip variant was not. Proinflammatory activity of rMip was unaffected by heat or proteinase K treatments but was greatly reduced by treatment with lipases, supporting a role of lipid modification in this process. Stimulating pathways appeared to involve TLR2/TLR1/TLR6 with the help of CD14 but not TLR4. These data support a role of Mip lipoprotein in pathogenesis of C. trachomatis-induced inflammatory responses. 相似文献
20.
TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells 总被引:34,自引:0,他引:34
Abreu MT Arnold ET Thomas LS Gonsky R Zhou Y Hu B Arditi M 《The Journal of biological chemistry》2002,277(23):20431-20437