首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acyclovir triphosphate (ACVTP) was a substrate for herpes simplex virus type 1 (HSV-1) DNA polymerase and was rapidly incorporated into a synthetic template-primer designed to accept either dGTP or ACVTP followed by dCTP. HSV-1 DNA polymerase was not inactivated by ACVTP, nor was the template-primer with a 3'-terminal acyclovir monophosphate moiety a potent inhibitor. Potent inhibition of HSV-1 DNA polymerase was observed upon binding of the next deoxynucleoside 5'-triphosphate coded by the template subsequent to the incorporation of acyclovir monophosphate into the 3'-end of the primer. The Ki for the dissociation of dCTP (the "next nucleotide") from this dead-end complex was 76 nM. In contrast, the Km for dCTP as a substrate for incorporation into a template-primer containing dGMP in place of acyclovir monophosphate at the 3'-primer terminus was 2.6 microM. The structural requirements for effective binding of the next nucleotide revealed that the order of potency of inhibition of a series of analogs was: dCTP much greater than arabinosyl-CTP greater than 2'-3'-dideoxy-CTP much greater than CTP, dCMP, dCMP + PPi. In the presence of the next required deoxynucleotide (dCTP), high concentrations of dGTP compete with ACVTP for binding and thus retard the formation of the dead-end complex. This results in a first-order loss of enzyme activity indistinguishable from that expected for a mechanism-based inactivator. The reversibility of the dead-end complex was demonstrated by steady-state kinetic analysis, analytical gel filtration, and by rapid gel filtration through Sephadex G-25. Studies indicated that potent, reversible inhibition by ACVTP and the next required deoxynucleoside 5'-triphosphate also occurred when poly(dC)-oligo(dG) or activated calf thymus DNA were used as the template-primer.  相似文献   

2.
The ability of herpes simplex virus type 1 (HSV-1) DNA polymerase, HeLa polymerase alpha, and HeLa polymerase beta to utilize several dGTP analogues has been investigated using a defined synthetic template primer. The relative efficiencies of the triphosphates of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir triphosphate, ACVTP), 9-[(1,3-dihydroxy-2-propoxy)methyl] guanine (ganciclovir triphosphate, DHPGTP), and 2',3'-dideoxyguanosine (ddGTP) as substrates for the three polymerases were: HSV-1 polymerase, dGTP greater than ACVTP approximately equal to DHPGTP greater than ddGTP; polymerase alpha, dGTP greater than ACVTP approximately equal to DHPGTP much greater than ddGTP; polymerase beta, ddGTP greater than dGTP much greater than ACVTP approximately equal to DHPGTP. The potent inhibition of HSV-1 polymerase by ACVTP has been shown previously to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3' end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism was shown here to be a general mechanism for inhibition of polymerases by the obligate chain terminators, ACVTP and ddGTP. The ACVTP-induced inhibition was 30-fold more potent with HSV-1 polymerase than with polymerase alpha. This difference may contribute to the antiviral selectivity of this nucleotide analogue. The effect of ganciclovir monophosphate incorporation (a nonobligate chain terminator) on subsequent primer extension was also evaluated. With HSV-1 polymerase and polymerase alpha, although there was a considerable reduction in the efficiency of utilization of the 3'-DHPGMP-terminal primer, contrasting kinetic behavior was observed. With HSV-1 polymerase, insertion of DHPGTP resulted in a significant reduction in Vmax for subsequent nucleotide incorporations. In contrast, with polymerase alpha, a relatively small decrease in Vmax was accompanied by increased Km values for subsequent nucleotide incorporations.  相似文献   

3.
Two high molecular weight DNA polymerases, which we have designated delta I and delta II, have been purified from calf thymus tissue. Using Bio Rex-70, DEAE-Sephadex A-25, and DNA affinity resin chromatography followed by sucrose gradient sedimentation, we purified DNA polymerase delta I 1400-fold to a specific activity of 10 000 nmol of nucleotide incorporated h-1 mg-1, and DNA polymerase delta II was purified 4100-fold to a final specific activity of 30 000 nmol of nucleotide incorporated h-1 mg-1. The native molecular weights of DNA polymerase delta I and DNA polymerase delta II are 240 000 and 290 000, respectively. Both enzymes have similarities to other purified delta-polymerases previously reported in their ability to degrade single-stranded DNA in a 3' to 5' direction, affinity for an AMP-hexane-agarose matrix, high activity on poly(dA) X oligo(dT) template, and relative resistance to the polymerase alpha inhibitors N2-(p-n-butylphenyl)dATP and N2-(p-n-butylphenyl)dGTP. These two forms of DNA polymerase delta also share several common features with alpha-type DNA polymerases. Both calf DNA polymerase delta I and DNA polymerase delta II are similar to calf DNA polymerase alpha in molecular weight, are inhibited by the alpha-polymerase inhibitors N-ethylmaleimide and aphidicolin, contain an active DNA-dependent RNA polymerase or primase activity, display a similar extent of processive DNA synthesis, and are stimulated by millimolar concentrations of ATP. We propose that calf DNA polymerase delta I, which also has a template specificity essentially identical with that of calf DNA polymerase alpha, could be an exonuclease-containing form of a DNA replicative enzyme.  相似文献   

4.
The herpes simplex virus type 1 (HSV-1) (strain 17) DNA polymerase gene has been cloned into an Escherichia coli-yeast shuttle vector fused to the galactokinase gene (GAL-1) promoter. Genes controlled by the GAL-1 promoter are induced by galactose, uninduced by raffinose, and repressed by glucose. Cell extracts from a strain of Saccharomyces cerevisiae harboring this vector (Y-MH202, expresser cells) grown in the presence of galactose and assayed in high salt (100 mM ammonium sulfate) contained a novel DNA polymerase activity. No significant high-salt DNA polymerase activity was detected in extracts from expresser cells grown in the presence of raffinose or in extracts from control cells containing the E. coli-yeast shuttle vector without the HSV-1 DNA polymerase gene grown in the presence of raffinose of galactose. Immunoblot analysis of the cell extracts by using a polyclonal rabbit antiserum prepared against a highly purified HSV-1 DNA polymerase preparation revealed the specific induction of the HSV-1 approximately 140-kilodalton DNA polymerase polypeptide in expresser cells grown in galactose. Extracts from the same cells grown in raffinose or control cells grown in either raffinose or galactose did not contain this immunoreactive polypeptide. The high-salt DNA polymerase activity in the extracts from expresser cells grown in galactose was inhibited greater than 90% by either acyclovir triphosphate or aphidicolin, as expected for HSV-1 DNA polymerase. In addition, the high-salt polymerase enzyme activity could be depleted from extracts by immunoprecipitation by using purified immunoglobulin G from this same polyclonal rabbit antiserum. These results demonstrate the successful expression of functional HSV-1 DNA polymerase enzyme in S. cerevisiae.  相似文献   

5.
6.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

7.
Properties of herpes simplex virus type 1 and type 2 DNA polymerase   总被引:25,自引:0,他引:25  
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) DNA polymerases were highly purified from infected HeLa BU cells by DEAE cellulose, phosphocellulose and DNA cellulose column chromatography. DNA exonuclease activity but not endonuclease activity was found associated with both types of DNA polymerase. Both DNA polymerase activities could be activated by salt in a similar fashion with the optimal activity in the range of ionic strength between 0.22 and 0.29 alpha. At an ionic strength of 0.14, spermidine and putrescine in the concentration range (0--5 mM) studied could mimic the action of KCI in stimulating DNA polymerase activity. Spermine, in the same concentration range, had a biphasic effect. At an ionic strength of 0.29 all three polyamines were inhibitory. HSV-1 and HSV-2 DNA polymerase are similar in their column chromatographic behavior, sedimentation rate in sucrose gradient centrifugation, and activation energy, but they differ in their heat stability at 45 degrees C with the HSV-2 enzyme more stable than the HSV-1 enzyme. Kinetic behavior of both enzymes is similar, with Km values for deoxyribonucleoside triphosphates in the range of 5 . 10(-7) to 1.8 . 10(-8) M. IdUTP and dUTP served as apparent competitive inhibitors with respect to dTTP, and AraATP acted as an apparent competitive inhibitor with respect to dATP. AraATP could not replace dATP in the DNA polymerization reaction; in contrast, IdUTP could replace TTP. Phosphonoformic acid behaved as an uncompetitive inhibitor with respect to DNA. The ID(50) value estimated was foind to be dependent on the purity of the DNA polymerase used and the ionic strength of the assay condition. Each DNA-polymerase associated DNA exonuclease had the same stability at 45 degrees C as its DNA polymerase. The associated DNAase activity was inhibited by phosphonoformic acid and high ionic strength of the assay condition.  相似文献   

8.
9.
Chaudhuri M  Parris DS 《Journal of virology》2002,76(20):10270-10281
The DNA polymerase holoenzyme of herpes simplex virus type 1 (HSV-1) is a stable heterodimer consisting of a catalytic subunit (Pol) and a processivity factor (UL42). HSV-1 UL42 differs from most DNA polymerase processivity factors in possessing an inherent ability to bind to double-stranded DNA. It has been proposed that UL42 increases the processivity of Pol by directly tethering it to the primer and template (P/T). To test this hypothesis, we took advantage of the different sensitivities of Pol and Pol/UL42 activities to ionic strength. Although the activity of Pol is inhibited by salt concentrations in excess of 50 mM KCl, the activity of the holoenzyme is relatively refractory to changes in ionic strength from 50 to 125 mM KCl. We used nitrocellulose filter-binding assays and real-time biosensor technology to measure binding affinities and dissociation rate constants of the individual subunits and holoenzyme for a short model P/T as a function of the ionic strength of the buffer. We found that as observed for activity, the binding affinity and dissociation rate constant of the Pol/UL42 holoenzyme for P/T were not altered substantially in high- versus low-ionic-strength buffer. In 50 mM KCl, the apparent affinity with which UL42 bound the P/T did not differ by more than twofold compared to that observed for Pol or Pol/UL42 in the same low-ionic-strength buffer. However, increasing the ionic strength dramatically decreased the affinity of UL42 for P/T, such that it was reduced more than 3 orders of magnitude from that of Pol/UL42 in 125 mM KCl. Real-time binding kinetics revealed that much of the reduced affinity could be attributable to an extremely rapid dissociation of UL42 from the P/T in high-ionic-strength buffer. The resistance of the activity, binding affinity, and stability of the holoenzyme for the model P/T to increases in ionic strength, despite the low apparent affinity and poor stability with which UL42 binds the model P/T in high concentrations of salt, suggests that UL42 does not simply tether the Pol to DNA. Instead, it is likely that conformational alterations induced by interaction of UL42 with Pol allow for high-affinity and high-stability binding of the holoenzyme to the P/T even under high-ionic-strength conditions.  相似文献   

10.
目的:用亲和层析法鉴定YlyA与RNA聚合酶(RNAP)的结合性能。方法:将YlyA分别上样于以Affigel 15为亲和介质制备的空白柱、牛血清白蛋白(BSA)柱和RNAP柱;以GreA和绿色荧光蛋白(GFP)为阳性和阴性对照蛋白分别上样于同一RNAP柱,洗涤和洗脱缓冲液(pH均为7.9)的盐离子浓度分别为30mmol/L和400mmol/L;用免疫印迹法对洗涤和洗脱流出液中的YlyA进行检测。结果:在空白柱和BSA柱的洗脱收集液中,没有检测到YlyA,大量的YlyA出现在了洗涤收集液中;而在RNAP柱的洗脱收集液中,检测到了YlyA和GreA,没有检测到GFP。结论:YlyA与RNAP之间具有特异性结合能力,为YlyA极有可能是一种转录因子的生物信息学分析结果提供了实验证据。  相似文献   

11.
The herpes simplex virus 1 (HSV-1) UL42 protein, one of seven herpes-encoded polypeptides that are required for the replication of the HSV-1 genome, is found in a 1:1 complex with the HSV-1 DNA polymerase (Crute, J. J., and Lehman, I. R. (1989) J. Biol. Chem. 264, 19266-19270). To obtain herpes DNA polymerase free of UL42 protein, we have cloned and overexpressed the Pol gene in a recombinant baculovirus vector and purified the recombinant DNA polymerase to near homogeneity. Replication of singly primed M13mp18 single-stranded DNA by the recombinant enzyme in the presence of the herpes encoded single-stranded DNA-binding protein ICP8 yields in addition to some full-length product a distribution of intermediate length products by a quasi-processive mode of deoxynucleotide polymerization. Addition of the purified UL42 protein results in completely processive polymerization and the generation of full-length products. Similar processivity is observed with the HSV-1 DNA polymerase purified from herpes-infected Vero cells. Processive DNA replication by the DNA polymerase isolated from HSV-1-infected Vero cells or the recombinant DNA polymerase-UL42 protein complex requires that the single-stranded DNA be coated with saturating levels of ICP8. ICP8 which binds single-stranded DNA in a highly cooperative manner is presumably required to melt out regions of secondary structure in the single-stranded DNA template, thereby potentiating the processivity enhancing action of the UL42 protein.  相似文献   

12.
A mutation (asparagine 815 to serine 815) was introduced into the herpes simplex virus type 1 (HSV-1) DNA polymerase (pol). The HSV-1 pol enzyme in lysates of Saccharomyces cerevisiae cells expressing the mutant protein showed increased resistance to acyclovir triphosphate and increased sensitivity to phosphonoacetate but was not substantially altered with respect to sensitivity to phosphonoformate or aphidicolin. These results directly demonstrate that both resistance to acyclovir triphosphate and sensitivity to phosphonoacetate can be conferred by this mutation in the absence of other viral factors and that the yeast expression system can be used for structure-function studies on HSV-1 pol.  相似文献   

13.
We report here the first case of an affinity isolation of eukaryotic RNA polymerase II. The procedure employs an affinity matrix composed of α-amanitin coupled to Sepharose 4B via a ten atom spacer. RNA polymerase II from either calf thymus or wheat germ binds to the amanitin-Sepharose, as indicated by subsequent elution with sodium dodecylsulfate-containing buffer and analysis by polyacrylamide gel electrophoresis. The specificity of binding is demonstrated by the fact that when the enzyme is preincubated with 1 μg/ml of free α-amanitin, subsequent binding to the amanitin-Sepharose is abolished. Elution methods that should permit the recovery of active enzyme from the column are discussed.  相似文献   

14.
The polymerase and deoxyribonuclease activities of the purified Ustilago maydis DNA polymerase coeluted from a hydroxyapatite column, cosedimented in sucrose gradients in both the absence and presence of salt, possessed similar thermolabilities and reaction requirements. These observations suggest that both activities are associated with the same enzyme and that the deoxyribonuclease activity is not a contaminant. The initial rate of degradation of native 3'-end-group-labelled DNA was similar to that of a heat-denatured substrate, but the final extent was greater for the former. The enzyme exhibits a high specificity for degradation of DNA in a 3' leads to 5' direction. The degradation of a DNA template was inhibited by the presence of the deoxyribonucleoside triphosphates necessary for simultaneous DNA synthesis, but not that of the newly synthesised DNA. About 50%, 29% and 13% of the purine, cytosine and thymine deoxyribonucleotide residues incorporated by the enzyme into DNA respectively, were subsequently excised when monitored by the resulting conversion of the triphosphate substrates to free monophosphate. The majority of the purine deoxyribonucleoside monophosphates appear after the synthetic phase of the reaction has ceased. In many respects, therefore, the deoxyribonuclease activity of the U. maydis DNA polymerase is similar to the bacteriophage T4-induced enzyme.  相似文献   

15.
Through years of practice, mass spectrometry has proven to be one of the most reliable and sensitive methods for the localization of protein phosphorylation sites. Among numerous innovative methods, affinity enrichment such as immobilized metal-ion affinity chromatography followed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis appears to be the most widely chosen procedure. Here, I report a method that was originally designed for purification of large amounts of nucleotides using anion-exchanging resin but has shown the promise of enriching phosphorylated peptides. Mixtures composed of uridine monophosphate, uridine diphosphate, uridine triphosphate, and their nonphosphate compound-uridine were bottom-line separated on an anion-exchanging solid-phase extraction (SPE) column by four steps of elution with a gradient of salt concentration and pH values. The miniature form of this SPE column showed significant separation (or enrichment) of the tryptic phospho-peptides from non-phospho-peptides of the standard protein beta-casein with two steps of elution (100mM NaCl and 5% NH(4)OH). Furthermore, after utilization of this anion-exchanging-column enrichment followed by LC/MS/MS analysis on a quadrupole-tine of flight instrument, a new phosphorylation site (S191) in bovine chromogranin A was identified.  相似文献   

16.
17.
单纯疱疹病毒1型(Herpes simplex virus type 1, HSV-1) UL42作为病毒编码的DNA聚合酶辅助亚基之一,是一种多功能蛋白,其在催化和调节病毒在细胞核内的有效复制发挥了重要的作用。已知UL42能提高DNA聚合酶催化亚基UL30的持续合成能力,激活病毒DNA聚合酶活性;介导DNA聚合酶的入核;与DNA模板链结合,提高病毒复制的保真度,以及含有抑制DNA聚合酶活性的肽段,提示其在病毒复制过程中也可能具有负调控作用。近期亦有报道显示,UL42能够阻断肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)激活的核转录因子(nuclear factor kappa-B,NF-κB)信号通路以及干扰素调控因子3(interferon regulatory factor 3, IRF-3)的功能,提示其在病毒逃逸宿主天然免疫反应中发挥了一定的功能,但具体的作用机制尚不明确。本文对目前国内外HSV-1 UL42的结构特点、主要功能、作用机制及其在抗病毒药物研发中的研究进展进行综述,为后续揭示病毒致病机制和抗病毒药物的研发提供参考。  相似文献   

18.
Genetic and biochemical studies have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication. A number of studies have previously suggested that these two proteins specifically interact, and more recent studies have confirmed that the viral DNA polymerase from HSV-1-infected cells consists of a heterodimer of the UL30 (Pol; the catalytic subunit) and UL42 polypeptides. A comparison of the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells indicated that the Pol-UL42 complex is more highly processive than Pol alone on singly primed M13 single-stranded substrates. The results of these studies are consistent with the idea that the UL42 polypeptide is an accessory subunit of the HSV-1 DNA polymerase that acts to increase the processivity of polymerization. Preliminary experiments suggested that the increase in processivity was accompanied by an increase in the affinity of the polymerase for the ends of linear duplex DNA. We have further characterized the effect of the UL42 polypeptide on a defined hairpin primer template substrate. Gel shift and filter binding studies show that the affinity of the Pol catalytic subunit for the 3' terminus of the primer template increases 10-fold in the presence of UL42. DNase I footprinting experiments indicate that the Pol catalytic subunit binds to the primer template at a position that protects 14 bp of the 3' duplex region and an adjacent 18 bases of the single-stranded template. The presence of the UL42 polypeptide results in the additional protection of a contiguous 5 to 14 bp in the duplex region but does not affect the 5' position of the Pol subunit. Free UL42 protects the entire duplex region of the substrate but does not bind to the single-stranded region. Taken together, these results suggest that the increase in processivity in the presence of UL42 is related to the double-stranded DNA-binding activity of free UL42 and that the role of UL42 in the DNA polymerase complex is to act as a clamp, decreasing the probability that the polymerase will dissociate from the template after each cycle of catalysis.  相似文献   

19.
An alternative and fast method for the purification of an exo-beta-D-galactofuranosidase has been developed using a 4-aminophenyl 1-thio-beta-D-galactofuranoside affinity chromatography system and specific elution with 10 mM D-galactono-1,4-lactone in a salt gradient. A concentrated culture medium from Penicillium fellutanum was chromatographed on DEAE-Sepharose CL 6B followed by chromatography on the affinity column, yielding two separate peaks of enzyme activity when elution was performed with 10 mM D-galactono-1,4-lactone in a 100-500 mM NaCl salt gradient. Both peaks behaved as a single 70 kDa protein, as detected by SDS-PAGE. Antibodies elicited against a mixture of the single bands excised from the gel were capable of immunoprecipitating 0.2 units out of 0.26 total units of the enzyme from a crude extract. The glycoprotein nature of the exo-beta-D-galactofuranosidase was ascertained through binding to Concanavalin A-Sepharose as well as by specific reaction with Schiff reagent in Western blots. The purified enzyme has an optimum acidic pH (between 3 and 6), and Km and Vmax values of 0.311 mM and 17 mumol h-1 microgram-1 respectively, when 4-nitrophenyl beta-D-galactofuranoside was employed as the substrate.  相似文献   

20.
The modification of the human placenta DNA polymerase alpha by the imidazolides of dNMP was investigated. The modification was shown to occur only in the simultaneous presence of the template and the primer. This process, however, doesn't depend on the complementary interaction of the nucleotide base with the template. The Kd values of the complexes between the different nucleotides and DNA polymerase alpha were estimated. The affinity of Im-dTMP was determined from the dependence of the Kapp of the enzyme inactivation rate on the reagent concentration. The Kd values for dNMP, dNDP, dNTP were estimated using the protective effect of these nucleotides under the enzyme modification by Im-dTMP. The comparison of the interaction efficiency between the polymerase and dNMP, dNDP, dNTP (complementary or non-complementary to the template) allow to conclude that the nucleotide discrimination occurs on the dNTP level, i. e. dNMP and dNDP upon forming the complex with the enzyme, don't interact complementarily with the template. The additional contacts between the enzyme and the nucleotide terminal phosphate were supposed to form only for the complementary dNTP. The studies allowed to put forward a hypothetical model of the template complementary dNTP binding to the polymerases. The role of the hydrophobic interaction of the nucleotides with the enzyme as well as the possible influence of the nucleotide gamma-phosphate group on the template--dNTP complement formation. The Watson-Crick bound formation of the nucleotide with the template was supposed to be followed by the additional conformational rearrangement of the nucleotide triphosphate chain. The latter process leads to the formation of additional contacts between the enzyme and the nucleotide gamma-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号