首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antigenic structure of simian virus 40 (SV40) large tumor antigen (T-ag) in the plasma membranes of SV40-transformed mouse cells and SV40-infected monkey cells was characterized as a step toward defining possible biological function(s). Wild-type SV40, as well as a deletion mutant of SV40 (dl1263) which codes for a truncated T-ag with an altered carboxy terminus, was used to infect permissive cells. Members of a series of monoclonal antibodies directed against antigenic determinants on either the amino or the carboxy terminus of the T-ag polypeptide were able to precipitate surface T-ag (as well as nuclear T-ag) from both SV40-transformed and SV40-infected cells. Cellular protein p53 was coprecipitated with T-ag by all T-ag-reactive reagents from the surface and nucleus of SV40-transformed cells. In contrast, T-ag, but not T-ag-p53 complex, was recovered from the surface of SV40-infected cells. These results confirm that nuclear T-ag and surface T-ag are highly related molecules and that a complex of SV40 T-ag and p53 is present at the surface of SV40-transformed cells. Detectable levels of such a complex do not appear to be present on SV40-infected cells. Both the carboxy and amino termini of T-ag are exposed on the surfaces of SV40-transformed and -infected cells. The possible relevance of the presence of a T-ag-p53 complex on the surface of SV40-transformed cells and its absence from SV40-infected cells is considered.  相似文献   

2.
Primate polyoma virus-transformed hamster, mouse, and rat cell lines were examined by indirect immunofluorescence staining for cell surface-associated T antigens, by using a rabbit antiserum prepared against sodium dodecyl sulfate-denatured large T antigen of simian virus 40 (anti-SV40-SDS-T serum). Positive surface staining was shown not only on SV40-transformed cells, but also on BK and JC virus-transformed cells. In contrast, normal cells and cells transformed with mouse polyoma-, human adeno-, and murine sarcoma viruses were negative. The data on SV40-transformed cells confirmed the reports of others demonstrating the cell surface location of SV40 large T antigen, and the data on BK and JC virus-transformed cells proved that these cells have cell-surface T antigens that cross-react with anti-SV40-SDS-T serum.  相似文献   

3.
Somatic cell hybrids between SV40-transformed human cell lines and mouse peritoneal macrophages (MPM) containing either human chromosome 7 or 17 carrying the SV40 genome were injected into mice syngeneic to the mouse parental cells. Since either chromosome 7 or 17 was the only human chromosome present in the hybrids used as immunogens, the humoral immune response to gene products coded for by either chromosome was assayed. Using a sensitive radioimmunoassay, we were able to identify noncross-reactive cell-surface antigen(s) specifically coded for by either human chromosome 7 or 17, and present in normal, tumor-derived and virus-transformed human cells. However, no reactivity against SV40 tumor-specific surface antigen (TSSA) could be detected in the antisera.  相似文献   

4.
Antisera prepared in syngeneic mice by hyperimmunization with intact SV40-transformed mouse cells or with somatic cell hybrids between SV40-transformed human and normal mouse cells exhibit anti-SV40 tumor (T) antigen reactivity. Athymic mice bearing tumors formed by SV40-transformed mouse, human or mouse-human hybrids were not reactive with SV40 T antigen. Anti-thymocyte serum (ATS)-treated mice also lacked T antigen reactivity during suppressive treatment but developed antibody to T antigen after discontinuing ATS treatment and tumor regression. We conclude that that presence of growing tumors in the mouse is not necessary for the production of anti-SV40 T antigen antibodies but that helper thymus-derived cells are essential for the humoral response.  相似文献   

5.
Simian virus 40 (SV40)-transformed monolayer cells were analyzed in situ by indirect immunofluorescence microscopy for the postulated cell surface location of SV40 T-antigen-related molecules. With antisera prepared against purified, sodium dodecyl sulfate-denatured SV40 T-antigen, positive surface staining was obtained when the cells had been treated with formaldehyde before immunofluorescence analysis. In contrast, living SV40-transformed cells analyzed in monolayer were surface fluorescence negative. The fixation procedure developed in this study combined with a double staining immunofluorescence technique allowed the simultaneous analysis of the same cells for the expression of both SV40 T-antigen-related surface antigen and nuclear T-antigen. The localization of SV40 T-antigen-related surface antigen on the outer surface of the plasma membrane of formaldehyde-fixed SV40-transformed cells was demonstrated directly by the protein A-mediated binding of Staphylococcus aureus bacteria on formaldehyde-fixed SV40-transformed cells precoated with antiserum against sodium dodecyl sulfate-denatured T-antigen. Both cell surface staining and S. aureus binding were found to be highly specific for SV40 T-antigen-related binding sites. These results indicate that T-antigen-related molecules in a cryptic form are located on the surface of SV40-transformed monolayer cells and can be detected in situ after modification of the cell surface architecture.  相似文献   

6.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

7.
Simian virus 40 (SV40)-transformed cells and cells infected by the nondefective adenovirus 2(Ad2)-SV40 hybrid viruses Ad2+ND1 and Ad2+ND2 were analyzed for SV40 T- and U-antigens, respectively, using individual hamster SV40 tumor sera or serum for which U-antibodies were removd by absorption. These studies showed that (i) T- and U-antigens can be defined by separate classes of antigenic determinants and (ii) the U-antigenic determinants in SV40-transformed cells and in hybrid virus-infected cells are similar. The apparent discrepancy in the subcellular location of U-antigen in SV40-transformed cells (nuclear location) and in hybrid virus-infected cells (perinuclear location) as determined by immunofluorescence staining of methanol/acetone-fixed cells could be resolved by treating hybrid virus-infected cells with a hypotonic KCl solution before fixation. Upon this treatment hybrid virus-infected cells also showed nuclear U-antigen staining. The possibility of an association of T- and U-antigens with different nuclear subfractions in SV40-transformed cells was investigated. Detergent-cleaned nuclei of SV40-transformed cells were fractionated into nuclear matrices and a DNase-treated, high-salt nuclear extract. Analysis of the nuclear matrices by immunofluorescence microscopy with T+U+ and T+U- hamster SV40 tumor serum revealed that U-antigen remained associated with the nuclear matrices, whereas T-antigen could not be detected in this nuclear subfraction. T-antigen, however, could be immunoprecipitated from nuclear extracts of the SV40-transformed cells.  相似文献   

8.
The susceptibility of mouse cells expressing full-length or truncated transforming protein (T antigen) of simian virus 40 (SV40) to lysis by murine natural killer (NK) cells was assessed. For these studies, C57BL/6 mouse embryo fibroblasts (B6/MEF) were transformed by transfection with SV40 DNA encoding the entire T antigen. The transformed cell lines were tested for susceptibility to lysis by nonimmune CBA splenocytes as a source of NK cells and to lysis by C57BL/6, SV40-specific cytolytic T cells (CTL). It was found that 13 of 15 clonally derived, SV40-transformed H-2b cell lines were susceptible to lysis by NK cells. However, there was some variation in their susceptibility to lysis by NK cells. There was no correlation between susceptibility to lysis by SV40-specific CTL and to lysis by NK cells. Cells transfected with a plasmid which encodes only the N-terminal half of the SV40 T antigen were consistently less susceptible to lysis by NK cells, suggesting that expression of only the N-terminus of the T antigen was insufficient for optimal susceptibility to lysis by NK cells. Primary mouse embryo fibroblasts transformed by human adenovirus type 5 E1 region DNA were also found to be susceptible to NK cell-mediated lysis. Lysis of SV40-transformed cells by nonimmune CBA splenocytes was mediated by NK cells because: lysis was augmented when the effector cells were treated with interferon before assay; and lysis was abrogated when the effector cells were obtained from mice that had been depleted of NK activity by treatment with antiserum against the asialo GM1 surface marker. These results indicate that primary mouse cells which are transformed by SV40 and which express the native T antigen are susceptible to lysis by mouse NK cells. Conversely, cells transformed by a plasmid encoding only the N-terminal half of the T antigen express reduced susceptibility to lysis by NK cells.  相似文献   

9.
Unlike most proteins, which are localized within a single subcellular compartment in the eucaryotic cell, the simian virus 40 (SV40) large tumor antigen (T-ag) is associated with both the nucleus and the plasma membrane. Current knowledge of protein processing would predict a role for the secretory pathway in the biosynthesis and transport of at least a subpopulation of T-ag to account for certain of its chemical modifications and for its ability to reach the cell surface. We have examined this prediction by using in vitro translation and translocation experiments. Preliminary experiments established that translation of T-ag was detectable with as little as 0.1 microgram of the total cytoplasmic RNA from SV40-infected cells. Therefore, by using a 100-fold excess of this RNA, the sensitivity of the assays was above the limits necessary to detect the theoretical fraction of RNA equivalent to the subpopulation of plasma-membrane-associated T-ag (2 to 5% of total T-ag). In contrast to a control rotavirus glycoprotein, the electrophoretic mobility of T-ag was not changed by the addition of microsomal vesicles to the in vitro translation mixture. Furthermore, T-ag did not undergo translocation in the presence of microsomal vesicles, as evidenced by its sensitivity to trypsin treatment and its absence in the purified vesicles. Identical results were obtained with either cytoplasmic RNA from SV40-infected cells or SV40 early RNA transcribed in vitro from a recombinant plasmid containing the SP6 promoter. SV40 early mRNA in infected cells was detected in association with free, but not with membrane-bound, polyribosomes. Finally, monensin, an inhibitor of Golgi function, failed to specifically prevent either glycosylation or cell surface expression of T-ag, although it did depress overall protein synthesis in TC-7 cells. We conclude from these observations that the constituent organelles of the secretory pathway are not involved in the biosynthesis, modification, or intracellular transport of T-ag. The initial step in the pathway of T-ag biosynthesis appears to be translation on free cytoplasmic polyribosomes. With the exclusion of the secretory pathway, we suggest that T-ag glycosylation, palmitylation, and transport to the plasma membrane are accomplished by previously unrecognized cellular mechanisms.  相似文献   

10.
The simian virus 40 (sv40) tumor antigen (T-antigen) and tumor-specific transplantation antigen (TSTA) have been partially purified and studied to clarify their relationship. The T-antigen and the TSTA were partially purified from nuclei of SV AL/N cells, and SV40-transformed mouse embryo fibroblast line, by precipitation with ammonium sulfate and chromatography on DEAE- and DNA-cellulose. The T-antigen was assayed by complement fixation, and the TSTA was assayed by its ability to immunize mice against SV40-containing ascites tumor cells. When T-antigen- and TSTA-containing preparations were sedimented through sucrose gradients, each antigen had a major peak of activity at a sedimentation coefficient of 6.7 and minor peaks in other regions. Antiserum against T-antigen (from tumor-bearing hamsters) immunoprecipitated the TSTA activity. A preparation of T-antigen from human SV80 cells, which exhibited only one protein band after sodium dodecylsulfate-polyacrylamide gel electrophoresis, had TSTA activity when as little as 0.6 microgram of protein per mouse was used for immunization. These experiments demonstrate that the T-antigen, the product of the SV40 early A gene is capable of inducing specific immunity against transplantation of SV40-transformed tumor cells in mice.  相似文献   

11.
Generation of cytotoxic lymphocytes by SV40-induced antigens   总被引:2,自引:0,他引:2  
In order to study the correlation of in vivo tumor transplantation immunity and in vitro immunologic assays, cell-mediated cytotoxicity against SV40-transformed cells was studied in AL/N strain mice by using 51Cr-release assay. Killing of SV40-transformed AL/N fibroblast cells was observed by spleen cells of AL/N mice immunized with syngeneic SV40-transformed cells. Immunization with the solubilized SV40 tumor-specific transplantation antigen (TSTA) that induced transplantation immunity in vivo did not elicit cytotoxic spleen cells in vitro. However, the spleen cells from mice immunized with solubilized TSTA and then sensitized in vitro with SV40-transformed cells became cytotoxic against SV40-transformed fibroblasts. Similarly, SV40 TSTA (T antigen) purified by immunoprecipitation was able to prime the lymphocytes in AL/N mice: the primed lymphocytes could differentiate into cytotoxic lymphocytes upon in vitro stimulation by SV40-transformed cells. These data indicate that SV40 TSTA (T antigen) plays a role in the induction of cytotoxic lymphocytes.  相似文献   

12.
Thirty six cloned hybridomas have been isolated which produce monoclonal antibodies directed against simian virus 40 (SV40) large T tumour antigen. They have been shown to recognize at least six different epitopes along the T antigen polypeptide according to their reaction with the various truncated forms of T antigen expressed by adenovirus-SV 40 hybrid viruses. Sixteen antibodies cross-react with cells infected by the closely related human BK virus. Only two antibodies, PAb1604 and PAb1614, directed against different epitopes of the SV40 T antigen, cross-react with polyoma large T tumour antigen which has a more limited amino acid sequence homology. This cross-reaction is rarely seen with polyclonal antibodies. Monoclonal antibody PAb1620 gave nuclear immunofluorescence only with murine cells transformed by SV40 and was found to react with a complex of T-antigen and 53 000-dalton host-coded protein. All the monoclonal antibodies react with nuclear T antigen and all but four antibodies stained the surface of SV40-transformed cells. These were four of the five antibodies directed against the central third of the T antigen. Thus the monoclonal antibodies show that cell surface T antigen differs from nuclear T antigen, either in accessibility or structure.  相似文献   

13.
Abelson murine leukemia virus (A-MuLV)-transformed cells, simian virus 40 (SV40)-transformed cells, and chemically transformed cells all have increased levels of a 50,000-molecular-weight host cell protein. The protein was detected with sera raised to the A-MuLV-transformed and chemically transformed cells and was tightly bound to T-antigen in extracts of SV40-transformed cells. Partial protease digests showed that the proteins from all three sources were indistinguishable. The three proteins were phosphorylated in cells, and the linkage of phosphate to the A-MuLV-associated P50 was to a serine residue. By immunofluorescence methods, P50-related protein was found on the surface of both normal lymphoid cells and A-MuLV-transformed lymphoid cells, but cell fractionation showed that the majority of P50 was free in the cytoplasm of the transformed cells. Immunofluorescence also showed that P50 was found in granules in the cytoplasm of both untransformed and SV40-transformed fibroblasts. Other cells gave indistinct patterns. Cocapping experiments showed that the A-MuLV-specified P120 protein is weakly associated with the surface P50-related protein of lymphoid cells, but no association of P120 and P50 could be demonstrated by immunoprecipitation methods. Although a monoclonal antiserum to P50 was used in many of these studies, the identity of the bulk P50 protein with the molecules that are reactive at the cell surface requires further study.  相似文献   

14.
J S Butel  C Wong    B K Evans 《Journal of virology》1986,60(2):817-821
Higher-molecular-weight forms of the simian virus 40 (SV40) large tumor antigen (T-Ag), designated super T-Ag, are commonly found in SV40-transformed rodent cells. We examined the potential role of super T-Ag in neoplastic progression by using a series of clonal SV40-transformed mouse mammary epithelial cell lines. We confirmed an association between the presence of super T-Ag and cellular anchorage-independent growth in methylcellulose. However, tumorigenicity in nude mice did not correlate with the expression of super T-Ag. In the tumors that developed in nude mice, super T-Ag expression fluctuated almost randomly. Cell surface iodination showed that super T-Ag molecules were transported to the epithelial cell surface. The biological functions of super T-Ag remain obscure, but it is clear that it is not important for tumorigenicity by SV40-transformed mouse mammary epithelial cells. Super T-Ag may be most important as a marker of genomic rearrangements by the resident viral genes in transformed cells.  相似文献   

15.
16.
Cell growth control appears to be drastically altered as a consequence of transformation. Because the cell surface appears to have a role in modulating cell growth and simian virus 40 (SV40)-transformed cells express large T antigen (T-Ag) in the plasma membrane, we investigated whether surface T-Ag expression varies according to cell growth rate. Different growth states were obtained by various combinations of seeding density, serum concentration, and temperature, and cell cycle distributions were determined by flow microcytofluorometry. Actively dividing SV40-transformed mouse cell cultures were consistently found to express higher levels of surface T-Ag and T-Ag/p53 complex than cultures in which cells were mostly resting. In addition, the T-Ag/p53 complex disappeared from the surface of tsA7-transformed cells cultured under restrictive conditions known to induce complete growth arrest (39.5 degrees C), although the surface complex did not disappear from other tsA transformants able to keep cycling at 39.5 degrees C. These results suggest that surface SV40 T-Ag or surface T-Ag/p53 complex, or both, are involved in determining the growth characteristics of SV40-transformed cells.  相似文献   

17.
Rabbits immunized with SV40 virus-transformed rabbit cells yielded antisera highly reactive in a mixed-hemadsorption assay against SV40-transformed hamster, mouse, and rabbit cells. Such antisera may prove of value in studies requiring large amounts of antibody angainst SV40-induced cell surface antigens.  相似文献   

18.
The complement-fixing tumor (T) antigen induced by simian virus 40 (SV40) has been prepared from SV40-infected cell cultures, from infected cell cultures treated at the time of infection with 1-beta-d-arabinofuranosylcytosine (ara-C), and from SV40-transformed cells. Upon partial purification, the T antigen exhibited the following properties: it was tightly adsorbed by calcium phosphate gel, it was precipitated by acetic acid at pH 5 or by ammonium sulfate at about 20 to 32% saturation, and it had a molecular weight greater than 250,000, as estimated by Sephadex G-200 gel chromatography. In contrast, deoxycytidylate (dCMP) deaminase, thymidylate (dTMP) kinase, and thymidine (dT) kinase were less strongly bound to calcium phosphate and were not precipitated at pH 5; these enzymes also had much lower molecular weights than the T antigen, as did dihydrofolic (FH(2)) reductase. Furthermore, higher ammonium sulfate concentrations were required to precipitate dCMP deaminase, dTMP kinase, and FH(2) reductase activities than to precipitate the T antigen. Another difference was that the T antigen was not stabilized, but dCMP deaminase, dTMP kinase, and dT kinase, were stabilized, respectively, by dCTP, dTMP, and dT or dTTP. Deoxyribonucleic acid (DNA) polymerase activity resembled the T antigen in adsorption to calcium phosphate, in precipitation by ammonium sulfate or at pH 5, and in the rate of inactivation when incubated at 38 C. However, the polymerase activity could be partly separated from the T antigen by Sephadex G-200 gel chromatography. The cell fraction containing partially purified T antigen also contained a soluble complement-fixing antigen (presumably a subunit of the viral capsid) which reacted with hyperimmune monkey sera. The latter antigen was present in very low titers or absent from cell extracts prepared from SV40-infected monkey kidney cell cultures which had been treated with ara-C at the time of infection, or from SV40-transformed mouse kidney (mKS) or hamster tumor (H-50) cells. The T antigen, however, was present in usual amounts in SV40-transformed cells or ara-C treated, infected cells.  相似文献   

19.
Wild-type (wt) murine p53 has been tested for its ability to block and reverse the transforming effects of simian virus 40 (SV40) large T antigen. Established and precrisis mouse cells overexpressing exogenously introduced wt p53 became resistant to SV40 transformation. The introduction of excess wt p53 into SV40-transformed precrisis cells reverted their transformed phenotype. However, the phenotype of SV40-transformed established cells was not reverted by excess wt p53. We conclude that an antioncogenic action of wt p53 is exerted during SV40 transformation and that in precrisis cells, the antitransforming action of wt p53 can be exerted both at initiation and during the maintenance of transformation.  相似文献   

20.
When simian virus 40 (SV40)-transformed mouse kidney cells (mKS) were grown in the presence of susceptible indicator cells, SV40 was readily recovered from: (i) 15 transformed cell lines, (ii) transformed cells subcultured 45 times over a 7-month period in medium containing antiviral serum and bromodeoxyuridine (dBU), (iii) 45 of 46 clonal lines isolated in the presence of antiviral serum, (iv) 19 of 19 secondary clones isolated from two clonal lines, and (v) dBU-resistant transformed cell lines. dBU-resistant SV40-transformed mouse kidney cell lines were selected and shown to contain the T antigen and to have normal levels of thymidylate kinase and deoxyribonucleic acid (DNA) polymerase, but to be deficient in thymidine (dT) kinase. Radioautographic and biochemical experiments demonstrated that very little (3)H-dT was incorporated into DNA of dBU-resistant cells during a 6-hr labeling period. After infection of dT kinase-deficient mKS cells with vaccinia virus, high levels of dT kinase were induced. The properties of SV40 recovered from dBU-sensitive and dBU-resistant cells were studied. SV40 recovered from transformed cells was shown to express in CV-1 cells at least six functions characteristic of parental virus: synthesis of capsid antigen, synthesis of T antigen, synthesis of viral DNA, induction of dT kinase, induction of DNA polymerase, and induction of host cell DNA synthesis. In addition, SV40 recovered from the transformed cells induced T antigen, dT kinase, deoxycytidylate deaminase, thymidylate kinase, and DNA polymerase in abortively infected mouse kidney cultures, and the virus was also capable of transforming primary cultures of mouse kidney cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号