首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complexes consisting of cyclin‐dependent kinases (CDKs) and their regulatory subunits (the cyclins) control the progression of normal mammalian cells through the cell cycle. However, during malignant transformation this regulatory apparatus malfunctions, allowing cells to undergo unchecked proliferation. In many cases, the high mitotic potential of malignant cells is due to the constitutive activation of CDK–cyclin complexes, facilitated by the inactivation of cellular CDK inhibitors, such as p16INK4A or p27Kip1, and the loss of functional tumor suppressors, such as the p53 and pRb proteins. It has recently been suggested that pharmacological intervention based on remedying the deficiency or loss of activity of these negative regulators of the cell cycle could be a very effective therapeutic option in the treatment of cancer. Multiple CDK inhibitors have been synthesized over the last two decades, spanning at least five classes of compounds. While these inhibitors can be classified on the basis of their chemical structure, it may be more interesting to categorize them according to their pharmacological nature, as broad ‐ spectrum unspecific, pan‐specific, or very selective antagonists. This review offers a critical assessment of the advantages and disadvantages of both pan‐specific and highly selective CDK inhibitors in therapy. J. Cell. Physiol. 226: 341–349, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The object of this paper is to review briefly the studies on the interactions of erythroid and non-erythroid spectrins with lipids in model and natural membranes. An important progress on the identification of lipid-binding sites has recently been made although many questions remain still unanswered. In particular, our understanding of the physiological role of such interactions is still limited. Another important issue is the occurrence of spectrins in membrane rafts, how they are attached to the raft and what is their function in rafts.  相似文献   

3.
Porphyrins are photodynamic drugs employed in an experimental tumor-treatment modality in which cell membranes are one of the primary drug-action sites. To gain insight into the nature of the interaction of these drugs with those primary sites we have studied the affinity of porphyrins to the lipid moieties of biological membranes, at the molecular level. The association of porphyrins to large unilamellar liposomes, modeling the lipid regions of biological membranes was studied (at equilibrium) for deuteroporphyrin IX and protoporphyrin IX, at neutral pH and 37 degrees C, taking into account porphyrin aggregation. Two thermodynamic approaches were investigated: (i) Simple partition equilibria between the external aqueous phase and the lipid bilayer, for drug monomers and dimers. (ii) Binding equilibria of drug monomers and dimers to the lipid bilayer. Using two types of experimental design and processing the data according to the expectations of both approaches, three different models for the binding (differing in the participation assigned to the dimer) were considered. Our major findings are: (a) The data clearly do not fit with the expectations for simple partition equilibria, nor with binding models assuming direct participation of the dimers. (b) The data fit well with a binding process, in which the membrane binds the porphyrin monomers only, with the dimers participating indirectly through the aqueous dimerization equilibrium. (c) At 37 degrees C and neutral pH, for liposomes composed of phosphatidylcholine/cholesterol at molar ratios of 3:2, we found for both investigated species a binding constant of 2.3 x 10(4) M-1. (d) For each species the binding constant is independent of the initial and final states of drug aggregation in the aqueous phase.  相似文献   

4.
5.
6.
The heart-forming fields: one or multiple?   总被引:4,自引:0,他引:4  
The recent identification of a second mesodermal region as a source of cardiomyocytes has challenged the views on the formation of the heart. This second source of cardiomyocytes is localized centrally on the embryonic disc relative to the remainder of the classic cardiac crescent, a region also called the pharyngeal mesoderm. In this review, we discuss the concept of the primary and secondary cardiogenic fields in the context of folding of the embryo, and the subsequent temporal events involved in formation of the heart. We suggest that, during evolution, the heart developed initially only with the components required for a systemic circulation, namely a sinus venosus, a common atrium, a 'left' ventricle and an arterial cone, the latter being the myocardial outflow tract as seen in the heart of primitive fishes. These components developed in their entirety from the classic cardiac crescent. Only later in the course of evolution did the appearance of novel signalling pathways permit the central part of the cardiac crescent, and possibly the contiguous pharyngeal mesoderm, to develop into the cardiac components required for the pulmonary circulation. These latter components comprise the right ventricle, and that part of the left atrium that derives from the mediastinal myocardium, namely the dorsal atrial wall and the atrial septum. It is these elements which are now recognized as developing from the second field of pharyngeal mesoderm. We suggest that, rather than representing development from separate fields, the cardiac components required for both the systemic and pulmonary circulations are derived by patterning from a single cardiac field, albeit with temporal delay in the process of formation.  相似文献   

7.
8.
9.
Chemotherapy continues to be the main therapeutic approach in the treatment of hematological malignancies including acute leukemia. Generally, chemotherapy is used to eliminate cancer cells and to restore normal bone marrow function. Simultaneous action of cytostatic drugs on bone marrow angiogenesis decreases the formation of new capillaries and improves therapeutic effect. However, chemotherapeutic agents may also be cytodestructive for cellular elements of other tissues, particularly the vascular endothelium, which can lead to various cardiovascular complications. In this work, we studied the effects of 2 cytostatic drugs, cytosine arabinoside (ara-C) and daunorubicin (DNR), on cultured human vascular (i.e., umbilical) endothelial cells (ECs). Ara-C and DNR were added to cultured cells at concentrations ranging from 1 ng/mL to 100 microg/mL. Drug effects were studied using phase-contrast microscopy, cell viability tests, BRDU incorporation, immunohistochemistry, flow cytometry, and cell cloning. At various concentrations, ara-C and DNR are able to induce morphological and functional changes in cultured cells related to either cytostatic or cytotoxic action. Moreover, ara-C-treated cultured cells displayed significant disturbances in cell adhesion molecule expression and interaction with blood leukocytes. Preliminary data obtained on acute leukemia patients undergoing standard cytostatic therapy ("7+3" regimen) have shown that concentration of the circulating ECs was significantly increased compared with the control group and could be as high as 500-1500 cells/mL of blood. Results obtained suggest that anticancer chemotherapy may induce systemic damage of vascular endothelium related to massive cell loss and (or) alterations of endothelial function.  相似文献   

10.
Metazoan inhabitants of extreme environments typically evolved from forms found in less extreme habitats. Understanding the prevalence with which animals move into and ultimately thrive in extreme environments is critical to elucidating how complex life adapts to extreme conditions. Methane seep sediments along the Oregon and California margins have low oxygen and very high hydrogen sulfide levels, rendering them inhospitable to many life forms. Nonetheless, several closely related lineages of dorvilleid annelids, including members of Ophryotrocha, Parougia, and Exallopus, thrive at these sites in association with bacterial mats and vesicomyid clam beds. These organisms are ideal for examining adaptive radiations in extreme environments. Did dorvilleid annelids invade these extreme environments once and then diversify? Alternatively, did multiple independent lineages adapt to seep conditions? To address these questions, we examined the evolutionary history of methane-seep dorvilleids using 16S and Cyt b genes in an ecological context. Our results indicate that dorvilleids invaded these extreme habitats at least four times, implying preadaptation to life at seeps. Additionally, we recovered considerably more dorvilleid diversity than is currently recognized. A total of 3 major clades (designated “Ophryotrocha,” “Mixed Genera” and “Parougia”) and 12 terminal lineages or species were encountered. Two of these lineages represented a known species, Parougia oregonensis, whereas the remaining 10 lineages were newly discovered species. Certain lineages exhibited affinity to geography, habitat, sediment depth, and/or diet, suggesting that dorvilleids at methane seeps radiated via specialization and resource partitioning.  相似文献   

11.
12.
Many environmental risk factors for common, complex human diseases have been revealed by epidemiologic studies, but how genotypes at specific loci modulate individual responses to environmental risk factors is largely unknown. Gene-environment interactions will be missed in genome-wide association studies and could account for some of the 'missing heritability' for these diseases. In this review, we focus on asthma as a model disease for studying gene-environment interactions because of relatively large numbers of candidate gene-environment interactions with asthma risk in the literature. Identifying these interactions using genome-wide approaches poses formidable methodological problems, and elucidating molecular mechanisms for these interactions has been challenging. We suggest that studying gene-environment interactions in animal models, although more tractable, might not be sufficient to shed light on the genetic architecture of human diseases. Lastly, we propose avenues for future studies to find gene-environment interactions.  相似文献   

13.
Protein-protein interactions have a key role in transduction pathways that regulate many cellular functions. Structural and functional properties of protein-protein interface are now better understood, therefore offering attractive opportunities for therapeutic intervention. Developping small molecules that modulate protein-protein interactions is challenging. Nethertheless, significant progress in this endeavour has been made on several fronts. Here, we use few illustrative examples to summarize recent work in this emerging field.  相似文献   

14.
Two families of ATP-binding cassette (ABC) transporters in which one or two extracytoplasmic substrate-binding domains are fused to either the N- or C-terminus of the translocator protein have been detected. This suggests that two, or even four, substrate-binding sites may function in the ABC transporter complex. This domain organization in ABC transporters, widely represented among microorganisms, raises new possibilities for how the substrate-binding protein(s) (SBPs) might interact with the translocator. One appealing hypothesis is that multiple substrate-binding sites in proximity to the entry site of the translocation pore enhance the transport capacity. We also discuss the implications of multiple substrate-binding sites in close proximity to the translocator in terms of broadened substrate specificity and possible cooperative interactions between SBPs and the translocator.  相似文献   

15.
16.
17.
[2-14C]-trans-2-hexadecenoyl CoA (16:1) and [2-14C]-trans-2-cis-8,11,14-eicosatetraenoyl CoA (20:4) were chemically synthesized and employed as competitive substrates for the liver microsomal trans-2-enoyl CoA reductase component of the fatty acid chain elongation system. Both 7.5 microM and 15 microM 20:4 competitively inhibited the reduction of 16:1 CoA to palmitoyl CoA. In addition, the reduction of both substrates was identically inhibited to the same extent by the acetylenic derivative, dec-2-ynoyl CoA. Furthermore, trypsin, chymotrypsin and subtilisin inhibited trans-2-enoyl CoA reductase activity when three different substrates were employed--16:1, 20:4 and trans-2-cis-11-octadecadienoyl CoA (18:2). These results are consistent with the hypothesis of multiple condensing enzymes connected to a single elongation pathway.  相似文献   

18.
19.
The neuropeptide Y family of G-protein-coupled receptors consists of five cloned members in mammals. Four genes give rise to functional receptors in all mammals investigated. The y6 gene is a pseudogene in human and pig and is absent in rat, but generates a functional receptor in rabbit and mouse and probably in the collared peccary (Pecari tajacu), a distant relative of the pig family. We report here that the guinea pig y6 gene has a highly distorted nucleotide sequence with multiple frame-shift mutations. One evolutionary scenario may suggest that y6 was inactivated before the divergence of the mammalian orders and subsequently resurrected in some lineages. However, the pseudogene mutations seem to be distinct in human, pig, and guinea pig, arguing for separate inactivation events. In either case, the y6 gene has a quite unusual evolutionary history with multiple independent deaths or resurrections.  相似文献   

20.
Problems of learning and memory: one or multiple memory systems?   总被引:3,自引:0,他引:3  
Learning, and hence memory, is ubiquitous not only throughout the animal kingdom, but apparently throughout many regions of the brain. Is all learning reducible to a single common form? Neuropsychological dissociations suggest that the mammalian brain possesses a number of different and potentially independent memory systems, with different mechanisms and anatomical dispositions, some of which are neurally widely dispersed and others of which are narrowly organized. Among the types considered are: (i) short-term memory; (ii) knowledge and skills; (iii) stable associative memory; (iv) event memory; and (v) priming. As double or multiple dissociations do not lead to logically inevitable conclusions, it has been argued that an alternative to multiple memory systems is variable modes of processing. But these, too, would be dissociable on the same lines of evidence. Dissociations, if strong and absolute, have strong pragmatic power when they are combined with evolutionary and neuroscientific evidence. Multiple memory systems may possibly share some common cellular mechanisms, but such mechanisms do not define the separate properties at the systems level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号